RESULTS OF AUTOMATIC COTTON CROPS MAPPING USING REMOTE SENSING DATA AND A PLANT GROWTH SIMULATION MODEL

IF 0.6 Q4 AGRONOMY
Rinat Gulyaev, A. Sultonov, R. Yunusov, D.R. Rafikov, Kamila Gulyaeva, Oybek Kimsanbaev, Bakhtiyor Kakhkhorov
{"title":"RESULTS OF AUTOMATIC COTTON CROPS MAPPING USING REMOTE SENSING DATA AND A PLANT GROWTH SIMULATION MODEL","authors":"Rinat Gulyaev, A. Sultonov, R. Yunusov, D.R. Rafikov, Kamila Gulyaeva, Oybek Kimsanbaev, Bakhtiyor Kakhkhorov","doi":"10.17930/agl2023211","DOIUrl":null,"url":null,"abstract":"The paper presents the results of application of the method of automatic generation of representative and unbiased set for in-season cotton crop mapping, based on crop simulation model, previously parameterized using ground truth and satellite data. The method provided confident mapping of cotton fields without using actual ground-truth information or a-priori information about their in-season phenology. Overall mapping accuracy calculated using relevant ground truth data for cotton fields has reached 95.6 %. Consideration of time series of NDVI values as a model of phase characteristics allowed using relatively simple criteria to identify typical representatives of the selected crop on the basis of analysis of their seasonal phenology and made it possible to build a reference sample for modeling and further classification.","PeriodicalId":44979,"journal":{"name":"AgroLife Scientific Journal","volume":"102 21","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgroLife Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17930/agl2023211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the results of application of the method of automatic generation of representative and unbiased set for in-season cotton crop mapping, based on crop simulation model, previously parameterized using ground truth and satellite data. The method provided confident mapping of cotton fields without using actual ground-truth information or a-priori information about their in-season phenology. Overall mapping accuracy calculated using relevant ground truth data for cotton fields has reached 95.6 %. Consideration of time series of NDVI values as a model of phase characteristics allowed using relatively simple criteria to identify typical representatives of the selected crop on the basis of analysis of their seasonal phenology and made it possible to build a reference sample for modeling and further classification.
利用遥感数据和植物生长模拟模型自动绘制棉花作物图的结果
本文介绍了根据作物模拟模型自动生成具有代表性和无偏见的当季棉花作物测绘集的方法的应用结果,该模型先前利用地面实况和卫星数据进行了参数化。该方法无需使用实际的地面实况信息或关于棉田当季物候的先验信息,即可提供可靠的棉田测绘。使用相关地面实况数据计算出的棉田总体测绘精度达到 95.6%。将归一化差异植被指数(NDVI)值的时间序列作为物候期特征模型进行考虑,可以在分析季节物候的基础上,利用相对简单的标准确定所选作物的典型代表,并为建模和进一步分类建立参考样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信