Sub-Poissonian Estimates for Exponential Moments of Additive Functionals over Pairs of Particles with Respect to Determinantal and Symplectic Pfaffian Point Processes Governed by Entire Functions
{"title":"Sub-Poissonian Estimates for Exponential Moments of Additive Functionals over Pairs of Particles with Respect to Determinantal and Symplectic Pfaffian Point Processes Governed by Entire Functions","authors":"A. Bufetov","doi":"10.17323/1609-4514-2023-23-4-463-478","DOIUrl":null,"url":null,"abstract":"The aim of this note is to estimate the tail of the distribution of the number of particles in an interval under determinantal and Pfaffian point processes. The main result of the note is that the square of the number of particles under the determinantal point process whose correlation kernel is an entire function of finite order has sub-Poissonian tails. The same result also holds in the symplectic Pfaffian case. As a corollary, sub-Poissonian estimates are also obtained for exponential moments of additive functionals over pairs of particles.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-4-463-478","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this note is to estimate the tail of the distribution of the number of particles in an interval under determinantal and Pfaffian point processes. The main result of the note is that the square of the number of particles under the determinantal point process whose correlation kernel is an entire function of finite order has sub-Poissonian tails. The same result also holds in the symplectic Pfaffian case. As a corollary, sub-Poissonian estimates are also obtained for exponential moments of additive functionals over pairs of particles.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.