{"title":"Catalytic Synthesis of Carbon Nanotubes and Hydrogen Gas from Waste Plastics Using LaNiO3 Perovskite Catalyst","authors":"Tian Qi, Runfeng Tian, Youjian Zhu, Chuanxiao Cheng, Shuhua Yang, Xiaorui Hu, Lanlan Jiang, Yanqiu Xiao","doi":"10.1166/jbmb.2024.2341","DOIUrl":null,"url":null,"abstract":"Using waste plastic syngas to prepare carbon nanotubes (CNTs) and hydrogen-rich gas is a clean and efficient recycling method for waste plastics, and it is very important to find out how to improve its yield and quality. In this work, CNTs and hydrogen-rich gas were prepared by LaNiO3 perovskitetype catalysts from waste plastic syngas model compound in laboratory. The LaNiO3 catalysts, carbon nanotubes and gas fractions produced at different temperatures were characterized and compared with the supported catalyst Ni/ZSM-5. The main conclusions were as follows: 650 °C catalytic temperature had maximum carbon nanotubes yield of 5.84 gCNTs/gCatalyst and H2 content of 44 Vol.%, which was 4.44 times the carbon nanotubes yield from the Ni/ZSM-5 catalyst at the same temperature case. A bottom growth pattern of carbon nanotubes produced on the LaNiO3 catalyst was observed by high resolution transmission electron microscopy (HRTEM). The X-ray crystal diffractometer (XRD) analysis revealed that the interaction force between Ni and the carrier was stronger in LaNiO3 than that of the Ni/ZSM-5 catalyst, resulting in two different growth patterns of carbon nanotubes. The present experiments probe that the LaNiO3 catalysts have a greater prospect of application in the preparation of CNTs and hydrogen-rich gas from waste plastic syngas.","PeriodicalId":15157,"journal":{"name":"Journal of Biobased Materials and Bioenergy","volume":"34 13","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biobased Materials and Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbmb.2024.2341","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using waste plastic syngas to prepare carbon nanotubes (CNTs) and hydrogen-rich gas is a clean and efficient recycling method for waste plastics, and it is very important to find out how to improve its yield and quality. In this work, CNTs and hydrogen-rich gas were prepared by LaNiO3 perovskitetype catalysts from waste plastic syngas model compound in laboratory. The LaNiO3 catalysts, carbon nanotubes and gas fractions produced at different temperatures were characterized and compared with the supported catalyst Ni/ZSM-5. The main conclusions were as follows: 650 °C catalytic temperature had maximum carbon nanotubes yield of 5.84 gCNTs/gCatalyst and H2 content of 44 Vol.%, which was 4.44 times the carbon nanotubes yield from the Ni/ZSM-5 catalyst at the same temperature case. A bottom growth pattern of carbon nanotubes produced on the LaNiO3 catalyst was observed by high resolution transmission electron microscopy (HRTEM). The X-ray crystal diffractometer (XRD) analysis revealed that the interaction force between Ni and the carrier was stronger in LaNiO3 than that of the Ni/ZSM-5 catalyst, resulting in two different growth patterns of carbon nanotubes. The present experiments probe that the LaNiO3 catalysts have a greater prospect of application in the preparation of CNTs and hydrogen-rich gas from waste plastic syngas.