Dietary novel alkaline protease from Bacillus licheniformis improves broiler meat nutritional value and modulates intestinal microbiota and metabolites.

IF 4.9 Q1 MICROBIOLOGY
Wuzhou Yi, Yanjie Liu, Shijun Fu, Jianshu Zhuo, Jiping Wang, Tizhong Shan
{"title":"Dietary novel alkaline protease from Bacillus licheniformis improves broiler meat nutritional value and modulates intestinal microbiota and metabolites.","authors":"Wuzhou Yi, Yanjie Liu, Shijun Fu, Jianshu Zhuo, Jiping Wang, Tizhong Shan","doi":"10.1186/s42523-023-00287-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Different types of exogenous protease supplements have a positive impact on animal performance, but their effects on the nutritional value of meat and the gut microbial community of broilers have not been extensively studied. The objective of this investigation was to determine the impact of supplementation with a novel alkaline protease derived from Bacillus licheniformis (at doses of 0, 100, 200, 300, and 400 g/t) on the fatty acid and amino acid profiles, inosine monophosphate (IMP) levels, total volatile basic nitrogen (TVB-N) content found within the breast muscle, as well as the impact on the cecal microbiota and metabolites.</p><p><strong>Results: </strong>Supplementation with 200-400 g/t of the novel protease resulted in a significant elevation in the concentration of essential amino acids (P < 0.001), flavor amino acids (P < 0.001), and total protein (P = 0.013) within the breast muscle. Results derived from the 16S rRNA sequencing and untargeted metabolomics analysis of the cecal content revealed that the novel protease reshaped the cecal microbial and metabolite profiles. In particular, it led to increased relative abundances of Bacteroides, Lactobacillus, Alistipes, and Eubacterium, while simultaneously causing a reduction in the metabolites of D-lactic acid and malonic acid. Moreover, correlation analyses unveiled significant relationships between distinct microbes and metabolites with the contents of IMP, fatty acids, and amino acids in the broiler's breast muscle.</p><p><strong>Conclusion: </strong>In summary, the novel protease regulated the intestinal microbial community and metabolism, thereby inducing changes in the compositions of fatty acids and amino acids profiles, as well as IMP levels in broiler meat. These alterations significantly contributed to the enhancement of the nutritional value and flavor of the meat.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-023-00287-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Different types of exogenous protease supplements have a positive impact on animal performance, but their effects on the nutritional value of meat and the gut microbial community of broilers have not been extensively studied. The objective of this investigation was to determine the impact of supplementation with a novel alkaline protease derived from Bacillus licheniformis (at doses of 0, 100, 200, 300, and 400 g/t) on the fatty acid and amino acid profiles, inosine monophosphate (IMP) levels, total volatile basic nitrogen (TVB-N) content found within the breast muscle, as well as the impact on the cecal microbiota and metabolites.

Results: Supplementation with 200-400 g/t of the novel protease resulted in a significant elevation in the concentration of essential amino acids (P < 0.001), flavor amino acids (P < 0.001), and total protein (P = 0.013) within the breast muscle. Results derived from the 16S rRNA sequencing and untargeted metabolomics analysis of the cecal content revealed that the novel protease reshaped the cecal microbial and metabolite profiles. In particular, it led to increased relative abundances of Bacteroides, Lactobacillus, Alistipes, and Eubacterium, while simultaneously causing a reduction in the metabolites of D-lactic acid and malonic acid. Moreover, correlation analyses unveiled significant relationships between distinct microbes and metabolites with the contents of IMP, fatty acids, and amino acids in the broiler's breast muscle.

Conclusion: In summary, the novel protease regulated the intestinal microbial community and metabolism, thereby inducing changes in the compositions of fatty acids and amino acids profiles, as well as IMP levels in broiler meat. These alterations significantly contributed to the enhancement of the nutritional value and flavor of the meat.

地衣芽孢杆菌的新型碱性蛋白酶能提高肉鸡肉质的营养价值并调节肠道微生物群和代谢物。
背景:不同类型的外源蛋白酶补充剂对动物的生产性能有积极影响,但它们对肉类营养价值和肉鸡肠道微生物群落的影响尚未得到广泛研究。本研究的目的是确定补充地衣芽孢杆菌提取的新型碱性蛋白酶(剂量为 0、100、200、300 和 400 克/吨)对脂肪酸和氨基酸谱、单磷酸肌苷(IMP)水平、胸肌中总挥发性碱性氮(TVB-N)含量的影响,以及对盲肠微生物群和代谢物的影响:结果:补充 200-400 克/吨的新型蛋白酶可显著提高必需氨基酸(P)的浓度:总之,新型蛋白酶能调节肠道微生物群落和新陈代谢,从而引起脂肪酸和氨基酸组成以及肉鸡体内 IMP 水平的变化。这些变化大大提高了肉的营养价值和风味。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信