Marius Meinhold, Sander Verbrugge, Andi Shi, Martin Schönfelder, Lore Becker, Richard T Jaspers, Peter S Zammit, Henning Wackerhage
{"title":"Yap/Taz activity is associated with increased expression of phosphoglycerate dehydrogenase that supports myoblast proliferation.","authors":"Marius Meinhold, Sander Verbrugge, Andi Shi, Martin Schönfelder, Lore Becker, Richard T Jaspers, Peter S Zammit, Henning Wackerhage","doi":"10.1007/s00441-023-03851-w","DOIUrl":null,"url":null,"abstract":"<p><p>In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"271-283"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-023-03851-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.