The application of bacteria-derived dehydrogenases and oxidases in the synthesis of gold nanoparticles.

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Applied Microbiology and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-01-06 DOI:10.1007/s00253-023-12853-1
Lela Martinaga, Roland Ludwig, Iva Rezić, Martina Andlar, Dietmar Pum, Ana Vrsalović Presečki
{"title":"The application of bacteria-derived dehydrogenases and oxidases in the synthesis of gold nanoparticles.","authors":"Lela Martinaga, Roland Ludwig, Iva Rezić, Martina Andlar, Dietmar Pum, Ana Vrsalović Presečki","doi":"10.1007/s00253-023-12853-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"62"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-023-12853-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.

Abstract Image

细菌衍生的脱氢酶和氧化酶在金纳米粒子合成中的应用。
本研究以氧化还原酶为生物还原剂,研究了嗜热球藻纤维生物糖脱氢酶(Mt CDH)、球菌葡萄糖脱氢酶(Gc GDH)和黑曲霉葡萄糖氧化酶(An GOX)合成金纳米粒子(Au-NPs)的绿色方法。研究并优化了反应条件对 Au-NPs 合成的影响。确定了反应动力学以及金离子对反应速率的影响。在动力学研究的基础上,提出了 Au-NP 的合成机理。紫外可见光谱和透射电子显微镜(TEM)对 Au-NPs 进行了表征。用 Mt CDH 和 Gc GDH 合成的 Au-NPs 的表面等离子体共振(SPR)吸收峰在 535 nm 处,表明其平均尺寸约为 50 nm。根据对 TEM 显微照片的图像分析,用 Gc GDH 合成的 Au-NPs 在反应 24 小时和 48 小时后呈球形,平均尺寸分别为 2.83 nm 和 6.63 nm。要点:- 金纳米粒子是在 CDH 和 GDH 酶的作用下合成的。- CDH 合成 Au-NPs 与纤维生物糖的氧化作用有关。- GDH 合成 Au-NPs 与反应动力学无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信