Marcos N. Moliné , Pablo G. Galliano , Analía G. Tomba Martinez
{"title":"Chemical degradation of magnesia–carbon refractories by different gaseous atmospheres","authors":"Marcos N. Moliné , Pablo G. Galliano , Analía G. Tomba Martinez","doi":"10.1016/j.cartre.2024.100320","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we use a novel methodology to analyse how the critical compositional variables of MgO<img>C bricks affect their chemical degradation by oxygen attack; the study focuses on the effect of the graphite content, the presence of aluminium, and the binder type. Oxidation tests are performed at 1000 °C, a typical preheating condition for steelmaking ladles, under two atmospheric conditions: one simulated the oxygen concentration in air, and the other, with a lower amount of oxygen, reproduces the conditions of the inner part of the brick when liquid steel is present. It was found that: a) the addition of Al reduces the carbon oxidation kinetic, mainly at a low O<sub>2</sub> partial pressure, b) increasing the graphite content led to a smaller decarburized area with higher O<sub>2</sub> consumption, and c) mixing CarboRes® with phenolic resin resulted in a higher O<sub>2</sub> consumption but at a slower oxidation rate.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000014/pdfft?md5=296159daa9e32d3bb6d98f786e7d2085&pid=1-s2.0-S2667056924000014-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we use a novel methodology to analyse how the critical compositional variables of MgOC bricks affect their chemical degradation by oxygen attack; the study focuses on the effect of the graphite content, the presence of aluminium, and the binder type. Oxidation tests are performed at 1000 °C, a typical preheating condition for steelmaking ladles, under two atmospheric conditions: one simulated the oxygen concentration in air, and the other, with a lower amount of oxygen, reproduces the conditions of the inner part of the brick when liquid steel is present. It was found that: a) the addition of Al reduces the carbon oxidation kinetic, mainly at a low O2 partial pressure, b) increasing the graphite content led to a smaller decarburized area with higher O2 consumption, and c) mixing CarboRes® with phenolic resin resulted in a higher O2 consumption but at a slower oxidation rate.