Aarón Gómez, Andrés Sánchez, Gina Durán, Mauren Villalta, Álvaro Segura, Mariángela Vargas, María Herrera, Melvin Sánchez, José María Gutiérrez, Guillermo León
{"title":"Intrageneric cross-reactivity of monospecific rabbit antisera against venoms of mamba (Elapidae: Dendroaspis spp.) snakes","authors":"Aarón Gómez, Andrés Sánchez, Gina Durán, Mauren Villalta, Álvaro Segura, Mariángela Vargas, María Herrera, Melvin Sánchez, José María Gutiérrez, Guillermo León","doi":"10.1016/j.toxcx.2023.100183","DOIUrl":null,"url":null,"abstract":"<div><p>Snakebite envenomation is a neglected tropical disease posing a high toll of mortality and morbidity in sub-Saharan Africa. Polyspecific antivenoms of broad effectiveness and specially designed for this region require a detailed understanding of the immunological features of the mamba snake (<em>Dendroaspis</em> spp.) venoms for the selection of the most appropriate antigen combination to produce antivenoms of wide neutralizing scope. Monospecific antisera were generated in rabbits against the venoms of the four species of mambas. The toxic effects of the immunization scheme in the animals were evaluated, antibody titers were estimated using immunochemical assays, and neutralization of lethal activity was assessed. By the end of the immunization schedule, rabbits showed normal values of the majority of hematological parameters tested. No muscle tissue damage was noticed, and no alterations in most serum chemical parameters were observed. Immunological analyses revealed a variable extent of cross-reactivity of the monospecific antisera against the heterologous venoms. The venoms of <em>D. jamesoni</em> and <em>D. viridis</em> generated the antisera with broader cross-reactivity by immunochemical parameters. The venoms of <em>D. polylepis</em> and <em>D. viridis</em> generated the antisera with better cross-neutralization of lethality, although the neutralizing ability of all antisera was lower than 0.16 mg venom/mL antiserum against either homologous or heterologous venoms. These experimental results must be scaled to large animal models used in antivenom manufacture at industrial level to assess whether these predictions are reproducible.</p></div>","PeriodicalId":37124,"journal":{"name":"Toxicon: X","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590171023000358/pdfft?md5=48c19a83c02fe7e56566189241acd1e4&pid=1-s2.0-S2590171023000358-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590171023000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Snakebite envenomation is a neglected tropical disease posing a high toll of mortality and morbidity in sub-Saharan Africa. Polyspecific antivenoms of broad effectiveness and specially designed for this region require a detailed understanding of the immunological features of the mamba snake (Dendroaspis spp.) venoms for the selection of the most appropriate antigen combination to produce antivenoms of wide neutralizing scope. Monospecific antisera were generated in rabbits against the venoms of the four species of mambas. The toxic effects of the immunization scheme in the animals were evaluated, antibody titers were estimated using immunochemical assays, and neutralization of lethal activity was assessed. By the end of the immunization schedule, rabbits showed normal values of the majority of hematological parameters tested. No muscle tissue damage was noticed, and no alterations in most serum chemical parameters were observed. Immunological analyses revealed a variable extent of cross-reactivity of the monospecific antisera against the heterologous venoms. The venoms of D. jamesoni and D. viridis generated the antisera with broader cross-reactivity by immunochemical parameters. The venoms of D. polylepis and D. viridis generated the antisera with better cross-neutralization of lethality, although the neutralizing ability of all antisera was lower than 0.16 mg venom/mL antiserum against either homologous or heterologous venoms. These experimental results must be scaled to large animal models used in antivenom manufacture at industrial level to assess whether these predictions are reproducible.