{"title":"Count and cofactor matroids of highly connected graphs","authors":"Dániel Garamvölgyi , Tibor Jordán , Csaba Király","doi":"10.1016/j.jctb.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two types of matroids defined on the edge set of a graph <em>G</em>: count matroids <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by a sparsity count involving the parameters <em>k</em> and <em>ℓ</em>, and the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by linear independence in the cofactor matrix of <em>G</em>. We show, for each pair <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span>, that if <em>G</em> is sufficiently highly connected, then <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> has maximum rank for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and the matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (<span><math><mi>k</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>), and Lovász and Yemini (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>). We also prove that if <em>G</em> is highly connected, then the vertical connectivity of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is also high.</p><p>We use these results to generalize Whitney's celebrated result on the graphic matroid of <em>G</em> (which corresponds to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) to all count matroids and to the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid: if <em>G</em> is highly connected, depending on <em>k</em> and <em>ℓ</em>, then the count matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>; and similarly, if <em>G</em> is 14-connected, then its <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>. We also derive similar results for the <em>t</em>-fold union of the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree <em>T</em> for which <span><math><mi>G</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is 3-connected, which verifies a case of a conjecture of Kriesell.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 1-29"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623001120/pdfft?md5=3aa4475308b3f1d90b43521f41db45ba&pid=1-s2.0-S0095895623001120-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623001120","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider two types of matroids defined on the edge set of a graph G: count matroids , in which independence is defined by a sparsity count involving the parameters k and ℓ, and the -cofactor matroid , in which independence is defined by linear independence in the cofactor matrix of G. We show, for each pair , that if G is sufficiently highly connected, then has maximum rank for all , and the matroid is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (), and Lovász and Yemini (). We also prove that if G is highly connected, then the vertical connectivity of is also high.
We use these results to generalize Whitney's celebrated result on the graphic matroid of G (which corresponds to ) to all count matroids and to the -cofactor matroid: if G is highly connected, depending on k and ℓ, then the count matroid uniquely determines G; and similarly, if G is 14-connected, then its -cofactor matroid uniquely determines G. We also derive similar results for the t-fold union of the -cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree T for which is 3-connected, which verifies a case of a conjecture of Kriesell.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.