An atomistic study on the HELP mechanism of hydrogen embrittlement in pure metal Fe

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Md Shahrier Hasan , Mehmet Fazil Kapci , Burak Bal , Motomichi Koyama , Hadia Bayat , Wenwu Xu
{"title":"An atomistic study on the HELP mechanism of hydrogen embrittlement in pure metal Fe","authors":"Md Shahrier Hasan ,&nbsp;Mehmet Fazil Kapci ,&nbsp;Burak Bal ,&nbsp;Motomichi Koyama ,&nbsp;Hadia Bayat ,&nbsp;Wenwu Xu","doi":"10.1016/j.ijhydene.2023.12.274","DOIUrl":null,"url":null,"abstract":"<div><p>The Hydrogen Enhanced Localized Plasticity (HELP) mechanism is one of the most important theories explaining Hydrogen Embrittlement in metallic materials. While much research has focused on hydrogen's impact on dislocation core structure and dislocation mobility, its effect on local dislocation density and plasticity remains less explored. This study examines both aspects using two distinct atomistic simulations: one for a single edge dislocation under shear and another for a bulk model under cyclic loading, both across varying hydrogen concentrations. We find that hydrogen stabilizes the edge dislocation and exhibits a dual impact on dislocation mobility. Specifically, mobility increases below a shear load of 900 MPa but progressively decreases above this threshold. Furthermore, dislocation accumulation is notably suppressed at around 1 % hydrogen concentration. These findings offer key insights for future research on Hydrogen Embrittlement, particularly in fatigue scenarios.</p></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"57 ","pages":"Pages 60-68"},"PeriodicalIF":8.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0360319923065746/pdfft?md5=44e91eeec325e8dbc9bad1eef84a4c1d&pid=1-s2.0-S0360319923065746-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319923065746","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Hydrogen Enhanced Localized Plasticity (HELP) mechanism is one of the most important theories explaining Hydrogen Embrittlement in metallic materials. While much research has focused on hydrogen's impact on dislocation core structure and dislocation mobility, its effect on local dislocation density and plasticity remains less explored. This study examines both aspects using two distinct atomistic simulations: one for a single edge dislocation under shear and another for a bulk model under cyclic loading, both across varying hydrogen concentrations. We find that hydrogen stabilizes the edge dislocation and exhibits a dual impact on dislocation mobility. Specifically, mobility increases below a shear load of 900 MPa but progressively decreases above this threshold. Furthermore, dislocation accumulation is notably suppressed at around 1 % hydrogen concentration. These findings offer key insights for future research on Hydrogen Embrittlement, particularly in fatigue scenarios.

Abstract Image

纯金属 Fe 中氢脆 HELP 机理的原子论研究
氢增强局部塑性(HELP)机制是解释金属材料氢脆的最重要理论之一。虽然许多研究都集中在氢对差排核心结构和差排流动性的影响上,但对氢对局部差排密度和塑性的影响的探讨仍然较少。本研究利用两种不同的原子模拟对这两方面进行了研究:一种是剪切作用下的单个边缘位错模拟,另一种是循环加载作用下的整体模型模拟,两种模拟均涉及不同的氢浓度。我们发现氢能稳定边缘位错,并对位错迁移率产生双重影响。具体来说,在 900 兆帕的剪切载荷下,位错流动性会增加,但超过这一临界值后,位错流动性会逐渐降低。此外,在氢浓度为 1% 左右时,位错累积明显受到抑制。这些发现为今后的氢脆研究,尤其是疲劳情况下的氢脆研究提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信