{"title":"Anthocyanin Extracted from Purple Sweet Potato Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice by Suppressing Pyroptosis and Altering Intestinal Flora Structure.","authors":"Jing Chen, Fei Jiang, Nana Xu, Guokai Dong, Jiebang Jiang, Meng Wang, Cong Li, Rongpeng Li","doi":"10.1089/jmf.2023.K.0247","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (<i>n</i> = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-<i>α</i>, N-GSDMS, and cleaved-IL-1<i>β</i> proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1<i>β</i>, and TNF-<i>α</i>, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased <i>Proteobacteria</i> and <i>Deferribacteres</i> and simultaneous elevation in <i>Firmicutes</i>, <i>Bacteroidetes</i>, and <i>Verrucomicrobia</i>. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medicinal food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/jmf.2023.K.0247","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (n = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-α, N-GSDMS, and cleaved-IL-1β proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased Proteobacteria and Deferribacteres and simultaneous elevation in Firmicutes, Bacteroidetes, and Verrucomicrobia. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.
期刊介绍:
Journal of Medicinal Food is the only peer-reviewed journal focusing exclusively on the medicinal value and biomedical effects of food materials. International in scope, the Journal advances the knowledge of the development of new food products and dietary supplements targeted at promoting health and the prevention and treatment of disease.