Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-03-14 DOI:10.1093/stmcls/sxad094
Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi
{"title":"Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy.","authors":"Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi","doi":"10.1093/stmcls/sxad094","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"230-250"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxad094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.

基于人类 iPSC 的慢性阻塞性肺病模型,用于研究疾病机制、预测 SARS-COV-2 的结果和测试预防性免疫疗法。
慢性阻塞性肺病与上皮损伤后的慢性炎症和修复机制失调有关。然而,缺乏能准确反映多细胞肺组织的体外模型阻碍了我们对慢性阻塞性肺病中上皮-间充质相互作用的了解。通过将转录组学和蛋白质组学方法结合应用于复杂的体外 iPSC-肺泡与成纤维细胞模型,探索了慢性阻塞性肺病和 SARS-CoV-2 感染后上皮-间充质相互作用。这些实验剖析了受 SARS-CoV-2 感染的肺泡生态位单细胞水平的动态变化,揭示了慢性阻塞性肺病中异常炎症反应、线粒体功能障碍和细胞死亡的复杂性,为深入了解 SARS-CoV-2 感染患者中观察到的组织损伤/炎症/重塑现象提供了依据。重要的是,这种三维系统允许对 ACE2 中和抗体进行评估,并证实了这种疗法在肺泡龛中预防 SARS-CoV-2 感染的有效性。因此,与成纤维细胞一起培养的iPSC-肺泡层为研究疾病特异性机制和开发新型疗法提供了一个前景广阔的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信