Tropical Fock–Goncharov coordinates for -webs on surfaces I: construction

IF 1.2 2区 数学 Q1 MATHEMATICS
Daniel C. Douglas, Zhe Sun
{"title":"Tropical Fock–Goncharov coordinates for -webs on surfaces I: construction","authors":"Daniel C. Douglas, Zhe Sun","doi":"10.1017/fms.2023.120","DOIUrl":null,"url":null,"abstract":"<p>For a finite-type surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104142456266-0825:S2050509423001202:S2050509423001202_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {S}$</span></span></img></span></span>, we study a preferred basis for the commutative algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104142456266-0825:S2050509423001202:S2050509423001202_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {C}[\\mathscr {R}_{\\mathrm {SL}_3(\\mathbb {C})}(\\mathfrak {S})]$</span></span></img></span></span> of regular functions on the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104142456266-0825:S2050509423001202:S2050509423001202_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {SL}_3(\\mathbb {C})$</span></span></img></span></span>-character variety, introduced by Sikora–Westbury. These basis elements come from the trace functions associated to certain trivalent graphs embedded in the surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104142456266-0825:S2050509423001202:S2050509423001202_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {S}$</span></span></img></span></span>. We show that this basis can be naturally indexed by nonnegative integer coordinates, defined by Knutson–Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock and Goncharov, to the tropical points at infinity of the dual version of the character variety.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite-type surface Abstract Image$\mathfrak {S}$, we study a preferred basis for the commutative algebra Abstract Image$\mathbb {C}[\mathscr {R}_{\mathrm {SL}_3(\mathbb {C})}(\mathfrak {S})]$ of regular functions on the Abstract Image$\mathrm {SL}_3(\mathbb {C})$-character variety, introduced by Sikora–Westbury. These basis elements come from the trace functions associated to certain trivalent graphs embedded in the surface Abstract Image$\mathfrak {S}$. We show that this basis can be naturally indexed by nonnegative integer coordinates, defined by Knutson–Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock and Goncharov, to the tropical points at infinity of the dual version of the character variety.

曲面上-网的热带福克-冈察洛夫坐标 I:构造
对于有限型曲面 $\mathfrak {S}$,我们研究了西科拉-韦斯特伯里(Sikora-Westbury)引入的交换代数 $\mathbb {C}[\mathscr {R}_\{mathrm {SL}_3(\mathbb {C})}(\mathfrak {S})]$上正则函数的优选基。这些基元来自与嵌入表面 $\mathfrak {S}$ 的某些三价图相关的迹函数。我们证明,这个基可以自然地用非负整数坐标来索引,这些坐标是由克努森-陶菱形不等式和模 3 全等条件定义的。根据福克和冈察洛夫的几何理论,这些坐标与特征多样性对偶版本的无穷远处的热带点相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信