Multilinear Fourier integral operators on modulation spaces

IF 1 3区 数学 Q1 MATHEMATICS
Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal
{"title":"Multilinear Fourier integral operators on modulation spaces","authors":"Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal","doi":"10.1515/forum-2023-0158","DOIUrl":null,"url":null,"abstract":"In this article, we study properties of multilinear Fourier integral operators on weighted modulation spaces. In particular, using the theory of Gabor frames, we study boundedness of multilinear Fourier integral operators on products of weighted modulation spaces. Further, we investigate the periodic multilinear Fourier integral operator. Finally, we study continuity of bilinear pseudo-differential operators on modulation spaces for certain symbol classes, namely <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐒𝐆</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0158_eq_0327.png\" /> <jats:tex-math>{\\mathbf{SG}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-class.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"104 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0158","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study properties of multilinear Fourier integral operators on weighted modulation spaces. In particular, using the theory of Gabor frames, we study boundedness of multilinear Fourier integral operators on products of weighted modulation spaces. Further, we investigate the periodic multilinear Fourier integral operator. Finally, we study continuity of bilinear pseudo-differential operators on modulation spaces for certain symbol classes, namely 𝐒𝐆 {\mathbf{SG}} -class.
调制空间上的多线性傅里叶积分算子
本文研究加权调制空间上的多线性傅里叶积分算子的性质。特别是,利用 Gabor 框架理论,我们研究了加权调制空间乘积上多线性傅里叶积分算子的有界性。此外,我们还研究了周期性多线性傅里叶积分算子。最后,我们研究了某些符号类(即𝐒𝐆 {\mathbf{SG}} -类)调制空间上双线性伪微分算子的连续性。 -类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信