Quantum toroidal algebras and solvable structures in gauge/string theory

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yutaka Matsuo , Satoshi Nawata , Go Noshita , Rui-Dong Zhu
{"title":"Quantum toroidal algebras and solvable structures in gauge/string theory","authors":"Yutaka Matsuo ,&nbsp;Satoshi Nawata ,&nbsp;Go Noshita ,&nbsp;Rui-Dong Zhu","doi":"10.1016/j.physrep.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>This is a review article on the quantum toroidal algebras, focusing on their roles in various solvable structures of 2d conformal field theory, supersymmetric gauge theory, and string theory. Using <span><math><mi>W</mi></math></span>-algebras as our starting point, we elucidate the interconnection of affine Yangians, quantum toroidal algebras, and double affine Hecke algebras.</p><p>Our exploration delves into the representation theory of the quantum toroidal algebra of <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in full detail, highlighting its connections to partitions, <span><math><mi>W</mi></math></span>-algebras, Macdonald functions, and the notion of intertwiners. Further, we also discuss integrable models constructed on Fock spaces and associated <span><math><mi>R</mi></math></span>-matrices, both for the affine Yangian and the quantum toroidal algebra of <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>.</p><p>The article then demonstrates how quantum toroidal algebras serve as a unifying algebraic framework that bridges different areas in physics. Notably, we cover topological string theory and supersymmetric gauge theories with eight supercharges, incorporating the AGT duality. Drawing upon the representation theory of the quantum toroidal algebra of <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we provide a rather detailed review of its role in the algebraic formulations of topological vertex and <span><math><mrow><mi>q</mi><mi>q</mi></mrow></math></span>-characters. Additionally, we briefly touch upon the corner vertex operator algebras and quiver quantum toroidal algebras.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1055 ","pages":"Pages 1-144"},"PeriodicalIF":23.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037015732300426X/pdfft?md5=95f14e19ad4d816d4f9804f1a1ffb632&pid=1-s2.0-S037015732300426X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037015732300426X","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This is a review article on the quantum toroidal algebras, focusing on their roles in various solvable structures of 2d conformal field theory, supersymmetric gauge theory, and string theory. Using W-algebras as our starting point, we elucidate the interconnection of affine Yangians, quantum toroidal algebras, and double affine Hecke algebras.

Our exploration delves into the representation theory of the quantum toroidal algebra of gl1 in full detail, highlighting its connections to partitions, W-algebras, Macdonald functions, and the notion of intertwiners. Further, we also discuss integrable models constructed on Fock spaces and associated R-matrices, both for the affine Yangian and the quantum toroidal algebra of gl1.

The article then demonstrates how quantum toroidal algebras serve as a unifying algebraic framework that bridges different areas in physics. Notably, we cover topological string theory and supersymmetric gauge theories with eight supercharges, incorporating the AGT duality. Drawing upon the representation theory of the quantum toroidal algebra of gl1, we provide a rather detailed review of its role in the algebraic formulations of topological vertex and qq-characters. Additionally, we briefly touch upon the corner vertex operator algebras and quiver quantum toroidal algebras.

量子环代数和量规/弦理论中的可解结构
这是一篇关于量子环形结构的综述文章,重点探讨量子环形结构在二维共形场论、超对称规理论和弦理论的各种可解结构中的作用。我们的探索深入到了量子环代数 gl1 的表示理论的全部细节,强调了它与分区、W-代数、麦克唐纳函数和交缠概念的联系。此外,我们还讨论了在福克空间和相关 R 矩上构建的可积分模型,包括仿射扬基和 gl1 的量子环代数。文章随后展示了量子环代数如何作为一个统一的代数框架,在物理学的不同领域架起桥梁。值得注意的是,我们涵盖了拓扑弦理论和具有八个超电荷的超对称规理论,并结合了 AGT 对偶。借鉴量子环代数 gl1 的表示理论,我们对其在拓扑顶点和 qq 字符代数式中的作用进行了相当详细的回顾。此外,我们还简要介绍了角顶点算子代数和四元量子环代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信