An artificial chaperone serves a dual role in regulating the assembly of peptides through phase separation

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wang Li, Yang Zhou, Sheng He, Tianyi Tong, Congsen Wang, Peichen Shi, Suixu Li, Xinchang Wang, Liulin Yang, Xiaoyu Cao, Zhong-Qun Tian
{"title":"An artificial chaperone serves a dual role in regulating the assembly of peptides through phase separation","authors":"Wang Li,&nbsp;Yang Zhou,&nbsp;Sheng He,&nbsp;Tianyi Tong,&nbsp;Congsen Wang,&nbsp;Peichen Shi,&nbsp;Suixu Li,&nbsp;Xinchang Wang,&nbsp;Liulin Yang,&nbsp;Xiaoyu Cao,&nbsp;Zhong-Qun Tian","doi":"10.1002/agt2.496","DOIUrl":null,"url":null,"abstract":"<p>In biological systems, molecular assembly primarily relies on the assistance of molecular chaperones. Inspired by nature, strategies like ‘chaperone-assisted assembly’ and ‘catalyzed assembly’ have been proposed for the sophisticated control of molecular assembly. Nonetheless, significant challenges remain in the rational design of such systems, calling for a deep understanding of underlying principles. Herein, we demonstrate an artificial chaperone serves a dual role, that is catalyst in low dosages and inhibitor in high dosages, in regulating the supramolecular polymerization of peptides. Low dosages of carboxymethyl cellulose, as the chaperones, catalyze the assembly of Aβ<sub>16-22</sub> peptides into fibrils through multi-step phase separation, while high dosages trap the peptides into coacervate intermediates and therefore inhibit the fibrillation. Consequently, the quantity of chaperones does not follow the intuition that ‘more is better’ for catalyzing assembly but instead has an optimal molar ratio. Investigation reveals that the interplay and evolution of electrostatic and hydrophobic interactions are the keys to achieving these processes. This study provides insights into the multifaceted roles artificial chaperones may play in a dosage-dependent manner and enriches the toolkit for efficient and controllable construction of complex assembly systems.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":13.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.496","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In biological systems, molecular assembly primarily relies on the assistance of molecular chaperones. Inspired by nature, strategies like ‘chaperone-assisted assembly’ and ‘catalyzed assembly’ have been proposed for the sophisticated control of molecular assembly. Nonetheless, significant challenges remain in the rational design of such systems, calling for a deep understanding of underlying principles. Herein, we demonstrate an artificial chaperone serves a dual role, that is catalyst in low dosages and inhibitor in high dosages, in regulating the supramolecular polymerization of peptides. Low dosages of carboxymethyl cellulose, as the chaperones, catalyze the assembly of Aβ16-22 peptides into fibrils through multi-step phase separation, while high dosages trap the peptides into coacervate intermediates and therefore inhibit the fibrillation. Consequently, the quantity of chaperones does not follow the intuition that ‘more is better’ for catalyzing assembly but instead has an optimal molar ratio. Investigation reveals that the interplay and evolution of electrostatic and hydrophobic interactions are the keys to achieving these processes. This study provides insights into the multifaceted roles artificial chaperones may play in a dosage-dependent manner and enriches the toolkit for efficient and controllable construction of complex assembly systems.

Abstract Image

Abstract Image

人工伴侣在通过相分离调节多肽组装方面发挥双重作用
在生物系统中,分子组装主要依靠分子伴侣的协助。受自然界的启发,人们提出了 "伴侣辅助组装 "和 "催化组装 "等策略,以实现对分子组装的精密控制。然而,合理设计此类系统仍面临巨大挑战,需要深入了解其基本原理。在此,我们展示了一种人工伴侣在调节肽的超分子聚合过程中的双重作用:低剂量时是催化剂,高剂量时是抑制剂。低剂量的羧甲基纤维素作为伴侣,通过多步相分离催化 Aβ16-22 肽组装成纤维,而高剂量的羧甲基纤维素则将肽困在凝聚中间体中,从而抑制肽的纤维化。因此,伴聚物的数量并不遵循催化组装 "越多越好 "的直觉,而是有一个最佳摩尔比。调查显示,静电和疏水相互作用的相互作用和演变是实现这些过程的关键。这项研究深入揭示了人工伴侣可能以剂量依赖的方式发挥的多方面作用,并丰富了高效、可控地构建复杂组装系统的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信