A novel modular opto-biomechatronics bioreactor for simultaneous isotropic mechanical stretch application and fluorescence microscopy under cell and tissue culture conditions
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Anna-Lena Merten , Ulrike Schöler , Christian Lesko , Lucas Kreiß , Dominik Schneidereit , Fabian Linsenmeier , Axel Stolz , Sebastian Rappl , Mohamed Ali , Tim Potié , Adel Ahmed , Jordi Morales-Dalmau , Jan Saam , Sebastian Schürmann , Oliver Friedrich
{"title":"A novel modular opto-biomechatronics bioreactor for simultaneous isotropic mechanical stretch application and fluorescence microscopy under cell and tissue culture conditions","authors":"Anna-Lena Merten , Ulrike Schöler , Christian Lesko , Lucas Kreiß , Dominik Schneidereit , Fabian Linsenmeier , Axel Stolz , Sebastian Rappl , Mohamed Ali , Tim Potié , Adel Ahmed , Jordi Morales-Dalmau , Jan Saam , Sebastian Schürmann , Oliver Friedrich","doi":"10.1016/j.biosx.2024.100437","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical stresses are an environmental challenge virtually all tissues in the body are exposed to and thus, are of fundamental interest to study cell reactions in mechanobiology. Yet, unlike acute short-term mechanical cell stimulations, long-term or cyclic mechano-stimulation as experienced in the body is difficult to reproduce. Bioreactors are designed to control cell culture conditions, but still, there are yet no technical solutions available to merge bioreactor and opto-biomechatronics technologies for cyclic stretch-applications and simultaneous live cell imaging. To close this gap, we have engineered an opto-biomechatronics module, consisting of our in-house developed <em>IsoStretcher</em> technology and customised epifluorescence optics, into an automated bioreactor platform. For this, redesigned polydimethylsiloxane (PDMS) chambers with closed geometry (<span><math><mo>∽</mo></math></span>700<!--> <span><math><mi>μ</mi></math></span>L internal volume) to warrant sterile operation were developed. Those chambers could be flushed with cell solution for cell seeding in a sterile manner. The epifluorescence imaging module was engineered into the reactor underneath the <em>IsoStretcher</em> to allow for continuous image acquisition during long-term stretch cycles (hours to days). The system was validated on human fibroblast BJ foreskin cells, and Cal-520 Ca<sup>2+</sup> fluorescence was stably imaged using our in-built autofocus functionality. Cultures for 24<!--> <!-->h within the <em>IsoStretcher</em>-bioreactor preserved a normal cell morphology as compared to external incubator control cultures. Isotropic stretch was reliably transferred to the cell membranes. Our system with in-built bioreactor and opto-biomechatronics functionality provides a holistic technology platform for the growing field of mechanobiology to allow long-term observations of cultured single cells and confluent cell layers that are subjected to cyclic long-term isotropic stretch protocols.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"16 ","pages":"Article 100437"},"PeriodicalIF":10.6100,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000013/pdfft?md5=b7661e2750b9a38a9e0312897bbe2105&pid=1-s2.0-S2590137024000013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical stresses are an environmental challenge virtually all tissues in the body are exposed to and thus, are of fundamental interest to study cell reactions in mechanobiology. Yet, unlike acute short-term mechanical cell stimulations, long-term or cyclic mechano-stimulation as experienced in the body is difficult to reproduce. Bioreactors are designed to control cell culture conditions, but still, there are yet no technical solutions available to merge bioreactor and opto-biomechatronics technologies for cyclic stretch-applications and simultaneous live cell imaging. To close this gap, we have engineered an opto-biomechatronics module, consisting of our in-house developed IsoStretcher technology and customised epifluorescence optics, into an automated bioreactor platform. For this, redesigned polydimethylsiloxane (PDMS) chambers with closed geometry (700 L internal volume) to warrant sterile operation were developed. Those chambers could be flushed with cell solution for cell seeding in a sterile manner. The epifluorescence imaging module was engineered into the reactor underneath the IsoStretcher to allow for continuous image acquisition during long-term stretch cycles (hours to days). The system was validated on human fibroblast BJ foreskin cells, and Cal-520 Ca2+ fluorescence was stably imaged using our in-built autofocus functionality. Cultures for 24 h within the IsoStretcher-bioreactor preserved a normal cell morphology as compared to external incubator control cultures. Isotropic stretch was reliably transferred to the cell membranes. Our system with in-built bioreactor and opto-biomechatronics functionality provides a holistic technology platform for the growing field of mechanobiology to allow long-term observations of cultured single cells and confluent cell layers that are subjected to cyclic long-term isotropic stretch protocols.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.