Nitrogen and carbon cycling and relationships to radium behavior in porewater and surface water: Insight from a dry year sampling in a hypersaline estuary

IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dorina Murgulet , Cody V. Lopez , Audrey R. Douglas , Mustafa Eissa , Kousik Das
{"title":"Nitrogen and carbon cycling and relationships to radium behavior in porewater and surface water: Insight from a dry year sampling in a hypersaline estuary","authors":"Dorina Murgulet ,&nbsp;Cody V. Lopez ,&nbsp;Audrey R. Douglas ,&nbsp;Mustafa Eissa ,&nbsp;Kousik Das","doi":"10.1016/j.marchem.2024.104351","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Biogeochemical transformations within highly saline subterranean estuaries (STE) dramatically affect solute cycling, resulting in submarine groundwater discharge (SGD) with distinct chemical signatures. The study hypothesizes that biogeochemical processes within hypersaline bay porewaters (PW) simultaneously affect nitrogen, carbon, and </span>radium cycling. We measured radium isotopes (</span><sup>226</sup>Ra, <sup>224</sup>Ra, and <sup>223</sup>Ra), nutrients (dissolved inorganic nitrogen [DIN: NH<sub>4</sub><sup>+</sup> + NO<sub>2</sub><sup>−</sup> + NO<sub>3</sub><sup>−</sup>], HPO<sub>4</sub><sup>2−</sup> [DIP], HSiO<sub>3</sub><sup>−</sup><span><span> [DSi], dissolved organic carbon<span> [DOC]), total alkalinity<span> (TA), dissolved inorganic carbon (DIC), </span></span></span>stable isotopes<span>, and major cations in PW and surface water (SW) of Baffin Bay, a well-mixed, semi-enclosed estuary along the semiarid northwestern Gulf of Mexico coast, over three seasons in a characteristically dry year. This study's findings show a concurrent increase in NH</span></span><sub>4</sub><sup>+</sup>, DIP, DSi, and TA/DIC with reduced metal species (e.g., Mn and Fe) and Ra during the hot and dry seasons, particularly in PW, under increasingly reducing conditions. Principal component analyses (PCA) suggest these increases are primarily driven by dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and dissolution of lithogenic particles and biogenic CaCO<sub>3</sub><span>, modulated by organic matter degradation or remineralization. While more significant terrestrial groundwater inputs may contribute to solutes and Ra supply in the STE, the biogeochemically induced variability in solute concentrations in PW primarily drives larger SGD-derived fluxes, particularly notable in hot months. During a typically dry year, these fluxes, estimated as the average of </span><sup>226</sup>Ra and <sup>223</sup>Ra mass balance models (e.g., July/November fluxes in Mmol∙d<sup>−1</sup>: 0.093/0.092 of NO<sub>3</sub><sup>−</sup>; 0.2/0.02 of NO<sub>2</sub><sup>−</sup>; 72/16 of NH<sub>4</sub><sup>+</sup>; 72.2/18 of DIN; 1.5/0.2 of HPO<sub>4</sub><sup>2−</sup>; 20/9 of HSiO<sub>3</sub><sup>−</sup><span><span>; 42/37 of DOC; 503/399 of TA; 582/431 of DIC) are orders of magnitude (∼4 for DIN and DIC, ∼3 for DIP, DSi, and DOC, and ∼2 for TA) greater than surface runoff inputs. These substantial SGD inputs likely sustain phytoplankton growth and potentially fuel </span>harmful algal blooms<span> while countering estuarine acidification.</span></span></p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"258 ","pages":"Article 104351"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324000021","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biogeochemical transformations within highly saline subterranean estuaries (STE) dramatically affect solute cycling, resulting in submarine groundwater discharge (SGD) with distinct chemical signatures. The study hypothesizes that biogeochemical processes within hypersaline bay porewaters (PW) simultaneously affect nitrogen, carbon, and radium cycling. We measured radium isotopes (226Ra, 224Ra, and 223Ra), nutrients (dissolved inorganic nitrogen [DIN: NH4+ + NO2 + NO3], HPO42− [DIP], HSiO3 [DSi], dissolved organic carbon [DOC]), total alkalinity (TA), dissolved inorganic carbon (DIC), stable isotopes, and major cations in PW and surface water (SW) of Baffin Bay, a well-mixed, semi-enclosed estuary along the semiarid northwestern Gulf of Mexico coast, over three seasons in a characteristically dry year. This study's findings show a concurrent increase in NH4+, DIP, DSi, and TA/DIC with reduced metal species (e.g., Mn and Fe) and Ra during the hot and dry seasons, particularly in PW, under increasingly reducing conditions. Principal component analyses (PCA) suggest these increases are primarily driven by dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and dissolution of lithogenic particles and biogenic CaCO3, modulated by organic matter degradation or remineralization. While more significant terrestrial groundwater inputs may contribute to solutes and Ra supply in the STE, the biogeochemically induced variability in solute concentrations in PW primarily drives larger SGD-derived fluxes, particularly notable in hot months. During a typically dry year, these fluxes, estimated as the average of 226Ra and 223Ra mass balance models (e.g., July/November fluxes in Mmol∙d−1: 0.093/0.092 of NO3; 0.2/0.02 of NO2; 72/16 of NH4+; 72.2/18 of DIN; 1.5/0.2 of HPO42−; 20/9 of HSiO3; 42/37 of DOC; 503/399 of TA; 582/431 of DIC) are orders of magnitude (∼4 for DIN and DIC, ∼3 for DIP, DSi, and DOC, and ∼2 for TA) greater than surface runoff inputs. These substantial SGD inputs likely sustain phytoplankton growth and potentially fuel harmful algal blooms while countering estuarine acidification.

Abstract Image

Abstract Image

氮和碳循环以及与孔隙水和地表水中镭行为的关系:从一个高盐度河口的干旱年取样中获得的启示
高盐度地下河口(STE)内的生物地球化学转化会极大地影响溶质循环,导致具有独特化学特征的海底地下水排放(SGD)。研究假设,高盐度海湾孔隙水(PW)中的生物地球化学过程会同时影响氮、碳和镭的循环。我们测量了镭同位素(226Ra、224Ra 和 223Ra)、营养物质(溶解无机氮[DIN:DIN:NH4+ + NO2- + NO3-]、HPO42- [DIP]、HSiO3- [DSi]、溶解有机碳 [DOC])、总碱度 (TA)、溶解无机碳 (DIC)、稳定同位素以及巴芬湾 PW 和地表水 (SW) 中的主要阳离子。研究结果表明,在炎热和干旱季节,特别是在 PW 中,在日益减少的条件下,NH4+、DIP、DSi 和 TA/DIC 同时增加,金属物种(如锰和铁)和 Ra 减少。主成分分析(PCA)表明,这些增加主要是由硝酸盐/亚硝酸盐异化作用还原成铵(DNRA)以及成岩微粒和生物CaCO3的溶解驱动的,并受到有机物降解或再矿化的调节。虽然更重要的陆地地下水输入可能会促进 STE 中溶质和镭的供应,但 PW 中由生物地球化学引起的溶质浓度变化主要推动了更大的 SGD 通量,尤其是在炎热的月份。在一个典型的干旱年份,这些通量是根据 226Ra 和 223Ra 质量平衡模型的平均值估算的(例如,226Ra 和 223Ra 质量平衡模型的平均值为 0.5%,而 226Ra 质量平衡模型的平均值为 0.5%)、7 月/11 月通量(单位:Mmol∙d-1):0.093/0.092 的 NO3-;0.2/0.02 的 NO2-;72/16 的 NH4+;72.2/18 的 DIN;1.5/0.2 of HPO42-;20/9 of HSiO3-;42/37 of DOC;503/399 of TA;582/431 of DIC)的数量级(DIN 和 DIC 为 4∼,DIP、DSi 和 DOC 为 3∼,TA 为 2∼)高于地表径流输入量。这些大量的 SGD 输入可能会维持浮游植物的生长,并可能助长有害藻类的大量繁殖,同时抵消河口酸化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Chemistry
Marine Chemistry 化学-海洋学
CiteScore
6.00
自引率
3.30%
发文量
70
审稿时长
4.5 months
期刊介绍: Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信