GLOBAL HYPOELLIPTICITY OF SUMS OF SQUARES ON COMPACT MANIFOLDS

IF 1.1 2区 数学 Q1 MATHEMATICS
Gabriel Araújo, Igor A. Ferra, Luis F. Ragognette
{"title":"GLOBAL HYPOELLIPTICITY OF SUMS OF SQUARES ON COMPACT MANIFOLDS","authors":"Gabriel Araújo, Igor A. Ferra, Luis F. Ragognette","doi":"10.1017/s147474802300049x","DOIUrl":null,"url":null,"abstract":"<p>We present necessary and sufficient conditions for an operator of the type sum of squares to be globally hypoelliptic on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105043019850-0091:S147474802300049X:S147474802300049X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$T \\times G$</span></span></img></span></span>, where <span>T</span> is a compact Riemannian manifold and <span>G</span> is a compact Lie group. These conditions involve the global hypoellipticity of a system of vector fields on <span>G</span> and are weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the torus. Examples of operators satisfying these conditions in the general setting are provided.</p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"52 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s147474802300049x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present necessary and sufficient conditions for an operator of the type sum of squares to be globally hypoelliptic on Abstract Image$T \times G$, where T is a compact Riemannian manifold and G is a compact Lie group. These conditions involve the global hypoellipticity of a system of vector fields on G and are weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the torus. Examples of operators satisfying these conditions in the general setting are provided.

紧凑流形上平方和的全局次椭圆性
我们提出了平方和类型的算子在 $T \times G$ 上具有全局次椭圆性的必要条件和充分条件,其中 T 是一个紧凑的黎曼流形,G 是一个紧凑的李群。这些条件涉及 G 上矢量场系统的全局次椭圆性,比霍尔曼德条件弱,同时概括了环上众所周知的 Diophantine 条件。本文还提供了在一般情况下满足这些条件的算子实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信