Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance

Chi Li, Zilong Zhang, Huifeng Zhang, Wenlong Yan, Yuheng Li, Lusheng Liang, Wei Yu, Xuteng Yu, Yao Wang, Prof. Ye Yang, Prof. Mohammad Khaja Nazeeruddin, Prof. Peng Gao
{"title":"Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance","authors":"Chi Li,&nbsp;Zilong Zhang,&nbsp;Huifeng Zhang,&nbsp;Wenlong Yan,&nbsp;Yuheng Li,&nbsp;Lusheng Liang,&nbsp;Wei Yu,&nbsp;Xuteng Yu,&nbsp;Yao Wang,&nbsp;Prof. Ye Yang,&nbsp;Prof. Mohammad Khaja Nazeeruddin,&nbsp;Prof. Peng Gao","doi":"10.1002/ange.202315281","DOIUrl":null,"url":null,"abstract":"<p>Ultraviolet-induced degradation has emerged as a critical stability concern impeding the widespread adoption of perovskite solar cells (PSCs), particularly in the context of phase-unstable wide-band gap perovskite films. This study introduces a novel approach by employing a fully aromatic carbazole-based self-assembled monolayer, denoted as (4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)phosphonic acid (MeO-PhPACz), as a hole-selective layer (HSL) in inverted wide-band gap PSCs. Incorporating a conjugated linker plays a pivotal role in promoting the formation of a dense and highly ordered HSL on substrates, facilitating subsequent perovskite interfacial interactions, and fostering the growth of uniform perovskite films. The high-quality film could effectively suppress interfacial non-radiative recombination, improving hole extraction/transport efficiency. Through these advancements, the optimized wide-band gap PSCs, featuring a band gap of 1.68 eV, attain an impressive power conversion efficiency (PCE) of 21.10 %. Remarkably, MeO-PhPACz demonstrates inherent UV resistance and heightened UV absorption capabilities, substantially improving UV resistance for the targeted PSCs. This characteristic holds significance for the feasibility of large-scale outdoor applications.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202315281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet-induced degradation has emerged as a critical stability concern impeding the widespread adoption of perovskite solar cells (PSCs), particularly in the context of phase-unstable wide-band gap perovskite films. This study introduces a novel approach by employing a fully aromatic carbazole-based self-assembled monolayer, denoted as (4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)phosphonic acid (MeO-PhPACz), as a hole-selective layer (HSL) in inverted wide-band gap PSCs. Incorporating a conjugated linker plays a pivotal role in promoting the formation of a dense and highly ordered HSL on substrates, facilitating subsequent perovskite interfacial interactions, and fostering the growth of uniform perovskite films. The high-quality film could effectively suppress interfacial non-radiative recombination, improving hole extraction/transport efficiency. Through these advancements, the optimized wide-band gap PSCs, featuring a band gap of 1.68 eV, attain an impressive power conversion efficiency (PCE) of 21.10 %. Remarkably, MeO-PhPACz demonstrates inherent UV resistance and heightened UV absorption capabilities, substantially improving UV resistance for the targeted PSCs. This characteristic holds significance for the feasibility of large-scale outdoor applications.

全芳香族自组装孔选择层实现高效反相宽带隙 Perovskite 太阳能电池的抗紫外线性能
紫外线引起的降解已成为阻碍包晶体太阳能电池(PSCs)广泛应用的关键稳定性问题,尤其是在相位不稳定的宽带隙包晶体薄膜方面。本研究介绍了一种新方法,即在倒置宽带隙 PSC 中采用全芳香族咔唑基自组装单层(表示为 (4-(3,6-二甲氧基-9H-咔唑-9-基)苯基)膦酸 (MeO-PhPACz))作为空穴选择层 (HSL)。共轭连接体在促进基底上形成致密、高度有序的 HSL、促进后续的包晶界面相互作用以及促进均匀的包晶薄膜生长方面发挥着关键作用。高质量的薄膜可有效抑制界面非辐射重组,提高空穴萃取/传输效率。通过这些先进技术,优化后的宽带隙 PSC(带隙为 1.68 eV)的功率转换效率(PCE)达到了惊人的 21.10%。值得注意的是,MeO-PhPACz 表现出固有的抗紫外线能力和更强的紫外线吸收能力,大大提高了目标 PSC 的抗紫外线能力。这一特性对大规模户外应用的可行性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信