Heterostructured NiTe/Ni2P nanoarrays as high-activity electrocatalysts for the oxygen evolution reaction in seawater splitting

Xiaohong Gao , Fangyuan Wang , Ruisong Li , Chenghang You , Yijun Shen , Zhenye Kang , Xinlong Tian , Bao Yu Xia
{"title":"Heterostructured NiTe/Ni2P nanoarrays as high-activity electrocatalysts for the oxygen evolution reaction in seawater splitting","authors":"Xiaohong Gao ,&nbsp;Fangyuan Wang ,&nbsp;Ruisong Li ,&nbsp;Chenghang You ,&nbsp;Yijun Shen ,&nbsp;Zhenye Kang ,&nbsp;Xinlong Tian ,&nbsp;Bao Yu Xia","doi":"10.1016/j.nxsust.2023.100018","DOIUrl":null,"url":null,"abstract":"<div><p>Scale-up hydrogen production from natural seawater presents a promising avenue to address the escalating depletion of fossil fuel resources. However, direct seawater splitting (DSS) remains a formidable challenge, primarily due to the deficiency of efficient, stable, and cost-effective catalysts for the oxygen evolution reaction (OER). In this paper, we demonstrate the fabrication of a self-supported heterostructured nanoarray electrocatalyst, namely, NiTe/Ni<sub>2</sub>P, which exhibits exceptional performance and durability in the OER in alkaline seawater conditions. Remarkably, this innovative catalyst displays an overpotential of merely 312 mV to achieve a current density of 100 mA cm<sup>−2</sup>. Moreover, the overall seawater splitting (OSS) process can be achieved at a cell voltage of 1.68 V while maintaining a high faradic efficiency (FE) of nearly 100 % for the OER, alongside exceptional stability exceeding 100 h of continuous testing. We have validated the presence of heterostructures and strong interactions between NiTe and Ni<sub>2</sub>P, as well as the Cl<sup>-</sup> repelling capability resulting from the incorporation of P, which induces a more negatively charged surface. These aforementioned factors are posited as the fundamental drivers behind the catalyst's extraordinary performance and steadfastness in the OER during DSS. Moreover, this strategic approach harbors tremendous potential for the systematic development of catalysts exhibiting exceptional OER performance within the realm of DSS.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823623000181/pdfft?md5=59e0e62f857e1b3d006c4cc1680391e9&pid=1-s2.0-S2949823623000181-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823623000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scale-up hydrogen production from natural seawater presents a promising avenue to address the escalating depletion of fossil fuel resources. However, direct seawater splitting (DSS) remains a formidable challenge, primarily due to the deficiency of efficient, stable, and cost-effective catalysts for the oxygen evolution reaction (OER). In this paper, we demonstrate the fabrication of a self-supported heterostructured nanoarray electrocatalyst, namely, NiTe/Ni2P, which exhibits exceptional performance and durability in the OER in alkaline seawater conditions. Remarkably, this innovative catalyst displays an overpotential of merely 312 mV to achieve a current density of 100 mA cm−2. Moreover, the overall seawater splitting (OSS) process can be achieved at a cell voltage of 1.68 V while maintaining a high faradic efficiency (FE) of nearly 100 % for the OER, alongside exceptional stability exceeding 100 h of continuous testing. We have validated the presence of heterostructures and strong interactions between NiTe and Ni2P, as well as the Cl- repelling capability resulting from the incorporation of P, which induces a more negatively charged surface. These aforementioned factors are posited as the fundamental drivers behind the catalyst's extraordinary performance and steadfastness in the OER during DSS. Moreover, this strategic approach harbors tremendous potential for the systematic development of catalysts exhibiting exceptional OER performance within the realm of DSS.

异质结构镍钛/镍2P纳米阵列作为高活性电催化剂用于海水分离中的氧进化反应
利用天然海水扩大制氢规模是解决化石燃料资源日益枯竭问题的一条大有可为的途径。然而,直接海水分离(DSS)仍然是一项艰巨的挑战,这主要是由于缺乏高效、稳定和具有成本效益的氧进化反应(OER)催化剂。在本文中,我们展示了一种自支撑异质结构纳米阵列电催化剂,即 NiTe/Ni2P,它在碱性海水条件下的氧进化反应中表现出卓越的性能和耐久性。值得注意的是,这种创新催化剂的过电位仅为 312 mV,电流密度却高达 100 mA cm-2。此外,整个海水分离(OSS)过程可在 1.68 V 的电池电压下实现,同时在 OER 中保持近 100 % 的高远动效率(FE),以及超过 100 小时连续测试的卓越稳定性。我们已经验证了 NiTe 和 Ni2P 之间存在异质结构和强烈的相互作用,以及 P 的加入所产生的排斥 Cl- 的能力,P 的加入使表面带负电荷更多。上述因素被认为是该催化剂在 DSS 过程中具有非凡性能和稳定的 OER 的根本原因。此外,这种战略方法还蕴含着巨大的潜力,可用于系统开发在 DSS 领域表现出卓越 OER 性能的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信