A spectroscopic investigation of the lowest electronic states of the I2+ cation as a candidate for detecting the time variation of fundamental constants
IF 1.4 4区 物理与天体物理Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Yujie Zhao , Yali Tian , Xiaohu He , Ting Gong , Xiaocong Sun , Guqing Guo , Xuanbing Qiu , Xiang Yuan , Jinjun Liu , Lunhua Deng , Chuanliang Li
{"title":"A spectroscopic investigation of the lowest electronic states of the I2+ cation as a candidate for detecting the time variation of fundamental constants","authors":"Yujie Zhao , Yali Tian , Xiaohu He , Ting Gong , Xiaocong Sun , Guqing Guo , Xuanbing Qiu , Xiang Yuan , Jinjun Liu , Lunhua Deng , Chuanliang Li","doi":"10.1016/j.jms.2023.111873","DOIUrl":null,"url":null,"abstract":"<div><p>The four lowest Ω substates (<em>X</em><sup>2</sup>Π<sub>3/2,g</sub>, <em>X</em><sup>2</sup>Π<sub>1/2,g</sub>, <em>A</em><sup>2</sup>Π<sub>3/2,u</sub> and <em>A</em><sup>2</sup>Π<sub>1/2,u</sub>) of the <span><math><mrow><msubsup><mtext>I</mtext><mn>2</mn><mo>+</mo></msubsup></mrow></math></span> cation have been studied by high-precision <em>ab initio</em> calculations in comparison with experimental high-resolution absorption spectra. The potential energy curves were calculated using the multi-reference configuration interaction (MRCI) method and Dirac method, respectively. Rovibrational levels of these electronic states were derived by solving the radial Schrödinger rovibrational equation. Molecular constants were obtained in fitting energy levels to a spectroscopic model. Using the fit spectroscopic constants and newly calculated transition dipole moment matrix elements, line strengths of vibronic bands in the <em>A</em><sup>2</sup>Π<sub>3/2,u</sub>- <em>X</em><sup>2</sup>Π<sub>3/2,g</sub> system, as well as Einstein <em>A</em> coefficients for 45 of these bands with <em>ν′</em> = 11–19 and <em>ν′′</em> = 1–5, have been derived. The Einstein <em>A</em> coefficients were used to compute radiative lifetimes of the <em>ν′</em> = 11–19 vibrational levels of the <em>A</em><sup>2</sup>Π<sub>3/2,u</sub> state. Enhancement factors for detecting the variation of the fine-structure constant (<em>α</em>) and the proton-to-electron mass ratio(<em>µ</em>) using transitions between nearly degenerate rovibronic levels of these low-lying states have been calculated.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"399 ","pages":"Article 111873"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285223001388","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The four lowest Ω substates (X2Π3/2,g, X2Π1/2,g, A2Π3/2,u and A2Π1/2,u) of the cation have been studied by high-precision ab initio calculations in comparison with experimental high-resolution absorption spectra. The potential energy curves were calculated using the multi-reference configuration interaction (MRCI) method and Dirac method, respectively. Rovibrational levels of these electronic states were derived by solving the radial Schrödinger rovibrational equation. Molecular constants were obtained in fitting energy levels to a spectroscopic model. Using the fit spectroscopic constants and newly calculated transition dipole moment matrix elements, line strengths of vibronic bands in the A2Π3/2,u- X2Π3/2,g system, as well as Einstein A coefficients for 45 of these bands with ν′ = 11–19 and ν′′ = 1–5, have been derived. The Einstein A coefficients were used to compute radiative lifetimes of the ν′ = 11–19 vibrational levels of the A2Π3/2,u state. Enhancement factors for detecting the variation of the fine-structure constant (α) and the proton-to-electron mass ratio(µ) using transitions between nearly degenerate rovibronic levels of these low-lying states have been calculated.
通过高精度 ab initio 计算与实验高分辨率吸收光谱的对比,研究了 I2+ 阳离子的四个最低 Ω 子态(X2Π3/2,g、X2Π1/2,g、A2Π3/2,u 和 A2Π1/2,u)。势能曲线分别采用多参考构型相互作用(MRCI)方法和狄拉克方法计算得出。这些电子态的振动水平是通过求解径向薛定谔振动方程得到的。分子常数是通过能级与光谱模型的拟合得到的。利用拟合的光谱常数和新计算的过渡偶极矩矩阵元素,得出了 A2Π3/2,u-X2Π3/2,g系统中振动带的线强度,以及其中ν′=11-19和ν′=1-5的45条带的爱因斯坦A系数。爱因斯坦 A 系数被用来计算 A2Π3/2,u态的ν′=11-19振动级的辐射寿命。计算出了利用这些低洼态的近乎退化的振动级之间的跃迁来探测精细结构常数(α)和质子-电子质量比(µ)变化的增强因子。
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.