{"title":"Rapid and robust bacterial species identification using hyperspectral microscopy and gram staining techniques","authors":"Yanzhong Zhou, Jieming Li, Zhen Li, Hao Yin, Siqi Zhu, Zhenqiang Chen","doi":"10.1002/jbio.202300449","DOIUrl":null,"url":null,"abstract":"<p>Gram staining can classify bacterial species into two large groups based on cell wall differences. Our study revealed that within the same gram group (gram-positive or gram-negative), subtle cell wall variations can alter staining outcomes, with the peptidoglycan layer and lipid content significantly influencing this effect. Thus, bacteria within the same group can also be differentiated by their spectra. Using hyperspectral microscopy, we identified six species of intestinal bacteria with 98.1% accuracy. Our study also demonstrated that selecting the right spectral band and background calibration can enhance the model's robustness and facilitate precise identification of varying sample batches. This method is suitable for analyzing bacterial community pathologies.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300449","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gram staining can classify bacterial species into two large groups based on cell wall differences. Our study revealed that within the same gram group (gram-positive or gram-negative), subtle cell wall variations can alter staining outcomes, with the peptidoglycan layer and lipid content significantly influencing this effect. Thus, bacteria within the same group can also be differentiated by their spectra. Using hyperspectral microscopy, we identified six species of intestinal bacteria with 98.1% accuracy. Our study also demonstrated that selecting the right spectral band and background calibration can enhance the model's robustness and facilitate precise identification of varying sample batches. This method is suitable for analyzing bacterial community pathologies.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.