Ali Tavakoli Pirzaman, Razieh Mansoori, Seyed Mohammad Hosseini, Ali Abolhosseini, Sahar Khosravi, Ali Akbar Moghadamnia, Sohrab Kazemi
{"title":"The effect of melatonin on capecitabine-induced hepatic and renal toxicity in rats.","authors":"Ali Tavakoli Pirzaman, Razieh Mansoori, Seyed Mohammad Hosseini, Ali Abolhosseini, Sahar Khosravi, Ali Akbar Moghadamnia, Sohrab Kazemi","doi":"10.1177/09603271231223506","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Capecitabine (CAPE), an antimetabolite chemotherapy, can induce hepatic and renal toxicity. Melatonin (MEL), a neurohormone, possesses antioxidant, anti-apoptotic and anti-inflammatory effects. This study investigated the impact of MEL on capecitabine-induced hepatic and renal toxicity.</p><p><strong>Methods and materials: </strong>Twenty-five male Wistar rats were categorized into five groups for the study. The groups included a control group, MEL10 group (rats receiving daily intraperitoneal injections of 5 mg/kg MEL), CAPE 500 group (rats receiving weekly intraperitoneal injections of 500 mg/kg CAPE), CAPE + MEL five group, and CAPE + MEL 10 group. All groups were treated for a duration of 6 weeks. Various hematological, serological, biochemical, and histopathological assessments were conducted to evaluate the objective of the study.</p><p><strong>Results: </strong>The administration of CAPE led to significant liver and kidney toxicity, as evidenced by elevated levels of malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), as well as serological markers including AST, ALT, ALP, BUN, and creatinine. CAPE exposure also resulted in a reduction in total antioxidant capacity (TAC) and glutathione peroxidase (GPx) levels. Histological examination revealed hyperemia in both liver and kidney tissues exposed to CAPE. However, treatment with MEL demonstrated positive effects. MEL administration alleviated oxidative stress, reduced levels of liver enzymes, BUN, and creatinine, and ameliorated histopathological degenerations. MEL also increased GPx and TAC levels. Moreover, MEL treatment aided in restoring the body weight that was lost due to CAPE exposure.</p><p><strong>Conclusion: </strong>Our findings indicated that the administration of MEL in rats significantly enhanced the hepatic and renal toxicity induced by CAPE.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271231223506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Capecitabine (CAPE), an antimetabolite chemotherapy, can induce hepatic and renal toxicity. Melatonin (MEL), a neurohormone, possesses antioxidant, anti-apoptotic and anti-inflammatory effects. This study investigated the impact of MEL on capecitabine-induced hepatic and renal toxicity.
Methods and materials: Twenty-five male Wistar rats were categorized into five groups for the study. The groups included a control group, MEL10 group (rats receiving daily intraperitoneal injections of 5 mg/kg MEL), CAPE 500 group (rats receiving weekly intraperitoneal injections of 500 mg/kg CAPE), CAPE + MEL five group, and CAPE + MEL 10 group. All groups were treated for a duration of 6 weeks. Various hematological, serological, biochemical, and histopathological assessments were conducted to evaluate the objective of the study.
Results: The administration of CAPE led to significant liver and kidney toxicity, as evidenced by elevated levels of malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), as well as serological markers including AST, ALT, ALP, BUN, and creatinine. CAPE exposure also resulted in a reduction in total antioxidant capacity (TAC) and glutathione peroxidase (GPx) levels. Histological examination revealed hyperemia in both liver and kidney tissues exposed to CAPE. However, treatment with MEL demonstrated positive effects. MEL administration alleviated oxidative stress, reduced levels of liver enzymes, BUN, and creatinine, and ameliorated histopathological degenerations. MEL also increased GPx and TAC levels. Moreover, MEL treatment aided in restoring the body weight that was lost due to CAPE exposure.
Conclusion: Our findings indicated that the administration of MEL in rats significantly enhanced the hepatic and renal toxicity induced by CAPE.