Network Pharmacology and Bioinformatics Analyses Identify the Core Genes and Pyroptosis-Related Mechanisms of Nardostachys Chinensis for Atrial Fibrillation.
{"title":"Network Pharmacology and Bioinformatics Analyses Identify the Core Genes and Pyroptosis-Related Mechanisms of <i>Nardostachys Chinensis</i> for Atrial Fibrillation.","authors":"Weiqi Xue, Yuan Luo, Weifeng He, Mengyuan Yan, Huanyi Zhao, Lijin Qing","doi":"10.2174/0115734099259071231115072421","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Nardostachys chinensis</i> is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear.</p><p><strong>Objective: </strong>To explore the molecular mechanism of <i>N. chinensis</i> against AF.</p><p><strong>Methods: </strong>The TCMSP was used to screen the active <i>N. chinensis</i> compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of <i>N. chinensis</i>, pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes.</p><p><strong>Results: </strong>Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of <i>N. chinensis</i>, and pyroptosis-related genes. Tolllike receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF.</p><p><strong>Conclusion: </strong>CASP8 and TNF are potential targets of <i>N. chinensis</i> intervention in pyroptosisrelated AF, and the TLR/NLRP3 signaling pathway may be associated with this process.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"1070-1086"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099259071231115072421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nardostachys chinensis is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear.
Objective: To explore the molecular mechanism of N. chinensis against AF.
Methods: The TCMSP was used to screen the active N. chinensis compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of N. chinensis, pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes.
Results: Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of N. chinensis, and pyroptosis-related genes. Tolllike receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF.
Conclusion: CASP8 and TNF are potential targets of N. chinensis intervention in pyroptosisrelated AF, and the TLR/NLRP3 signaling pathway may be associated with this process.