The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic beta cells.

IF 3 Q2 PHARMACOLOGY & PHARMACY
Bozica Kovacevic, Melissa Jones, Susbin Raj Wagle, Corina Mihaela Ionescu, Thomas Foster, Maja Đanić, Momir Mikov, Armin Mooranian, Hani Al-Salami
{"title":"The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic beta cells.","authors":"Bozica Kovacevic, Melissa Jones, Susbin Raj Wagle, Corina Mihaela Ionescu, Thomas Foster, Maja Đanić, Momir Mikov, Armin Mooranian, Hani Al-Salami","doi":"10.4155/tde-2023-0054","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The aim of this study is to test the biocompatibility of hydrogels with polysaccharides and bile acids on three murine cell lines. <b>Materials & methods:</b> Novel hydrogels containing poloxamer 407, polysaccharides (starch, pectin, acacia, carboxymethyl and methyl 2-hydroxyethyl cellulose) and deoxycholic acid were prepared using cold method, sterilized and used in biological assays to determine effects on hepatic, muscle, and pancreatic beta cells. <b>Results and conclusion:</b> Hydrogels with deoxycholic acid had tissue-depending effects on cellular survival and bioenergetics, resulting in the best cellular viability and bioenergetics within pancreatic beta cells. Further research is needed as proposed hydrogels may be beneficial for cell delivery systems of pancreatic beta cells.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/tde-2023-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The aim of this study is to test the biocompatibility of hydrogels with polysaccharides and bile acids on three murine cell lines. Materials & methods: Novel hydrogels containing poloxamer 407, polysaccharides (starch, pectin, acacia, carboxymethyl and methyl 2-hydroxyethyl cellulose) and deoxycholic acid were prepared using cold method, sterilized and used in biological assays to determine effects on hepatic, muscle, and pancreatic beta cells. Results and conclusion: Hydrogels with deoxycholic acid had tissue-depending effects on cellular survival and bioenergetics, resulting in the best cellular viability and bioenergetics within pancreatic beta cells. Further research is needed as proposed hydrogels may be beneficial for cell delivery systems of pancreatic beta cells.

脱氧胆酸水凝胶对肝脏、肌肉和胰腺β细胞的影响
目的:本研究旨在测试含有多糖和胆汁酸的水凝胶对三种小鼠细胞系的生物相容性。材料与方法:采用冷冻法制备含有聚氧乙烯酰胺 407、多糖(淀粉、果胶、金合欢、羧甲基和甲基 2-羟乙基纤维素)和脱氧胆酸的新型水凝胶,灭菌后用于生物检测,以确定对肝细胞、肌肉细胞和胰腺β细胞的影响。结果和结论含脱氧胆酸的水凝胶对细胞存活和生物能的影响取决于组织,在胰腺β细胞中细胞存活率和生物能最好。由于所提出的水凝胶可能有益于胰腺β细胞的细胞输送系统,因此还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapeutic delivery
Therapeutic delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.50
自引率
0.00%
发文量
25
期刊介绍: Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信