Xinjiao Li, Guowei Wu, Lin Yao, Zhaolong Zheng, Shisong Geng
{"title":"Utility-aware Privacy Perturbation for Training Data","authors":"Xinjiao Li, Guowei Wu, Lin Yao, Zhaolong Zheng, Shisong Geng","doi":"10.1145/3639411","DOIUrl":null,"url":null,"abstract":"<p>Data perturbation under differential privacy constraint is an important approach of protecting data privacy. However, as the data dimensions increase, the privacy budget allocated to each dimension decreases and thus the amount of noise added increases, which eventually leads to lower data utility in training tasks. To protect the privacy of training data while enhancing data utility, we propose an Utility-aware training data Privacy Perturbation scheme based on attribute Partition and budget Allocation (UPPPA). UPPPA includes three procedures, the quantification of attribute privacy and attribute importance, attribute partition, and budget allocation. The quantification of attribute privacy and attribute importance based on information entropy and attribute correlation provide an arithmetic basis for attribute partition and budget allocation. During the attribute partition, all attributes of training data are classified into high and low classes to achieve privacy amplification and utility enhancement. During the budget allocation, a <i>γ</i>-privacy model is proposed to balance data privacy and data utility so as to provide privacy constraint and guide budget allocation. Three comprehensive sets of real-world data are applied to evaluate the performance of UPPPA. Experiments and privacy analysis show that our scheme can achieve the tradeoff between privacy and utility.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"2 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639411","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data perturbation under differential privacy constraint is an important approach of protecting data privacy. However, as the data dimensions increase, the privacy budget allocated to each dimension decreases and thus the amount of noise added increases, which eventually leads to lower data utility in training tasks. To protect the privacy of training data while enhancing data utility, we propose an Utility-aware training data Privacy Perturbation scheme based on attribute Partition and budget Allocation (UPPPA). UPPPA includes three procedures, the quantification of attribute privacy and attribute importance, attribute partition, and budget allocation. The quantification of attribute privacy and attribute importance based on information entropy and attribute correlation provide an arithmetic basis for attribute partition and budget allocation. During the attribute partition, all attributes of training data are classified into high and low classes to achieve privacy amplification and utility enhancement. During the budget allocation, a γ-privacy model is proposed to balance data privacy and data utility so as to provide privacy constraint and guide budget allocation. Three comprehensive sets of real-world data are applied to evaluate the performance of UPPPA. Experiments and privacy analysis show that our scheme can achieve the tradeoff between privacy and utility.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.