Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Di Wang, Jinshi Zeng, Hailin Zhu, Siyu Liu, Litao Jia, Wenshuai Liu, Qian Wang, Senmao Wang, Wei Liu, Jiayu Zhou, Huimin Chen, Xia Liu, Haiyue Jiang
{"title":"Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration","authors":"Di Wang,&nbsp;Jinshi Zeng,&nbsp;Hailin Zhu,&nbsp;Siyu Liu,&nbsp;Litao Jia,&nbsp;Wenshuai Liu,&nbsp;Qian Wang,&nbsp;Senmao Wang,&nbsp;Wei Liu,&nbsp;Jiayu Zhou,&nbsp;Huimin Chen,&nbsp;Xia Liu,&nbsp;Haiyue Jiang","doi":"10.1002/agt2.477","DOIUrl":null,"url":null,"abstract":"<p>Despite recent advances in extrusion bioprinting of cell-laden hydrogels, using naturally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge. Here, we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure. The tough hydrogels consisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid (o-nitrobenzyl-grafted hyaluronic acid) and elastin through Schiff's base reaction, and free-radically polymerized gelatin methacryloyl. The incorporation of elastin further improved the elasticity, stretchability (∼170% strain), and toughness (∼45 kJ m<sup>−3</sup>) of the hydrogels due to the random coiling structure. We used this novel class of hydrogel bioinks to bioprint several complex elastic tissues with good shape retention. Furthermore, in vitro and in vivo experiments also demonstrated that the existence of elastin in the biocompatible bioinks facilitated improved cell behaviors and biological functions of bioprinted tissues, such as cell spreading and phenotype maintenance as well as tissue regeneration. The results confirmed the potential of the elastin-containing tough hydrogel bioinks for bioprinting of 3D complex elastic tissues with biological functionalities, which may find widespread applications in elastic tissue regeneration.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":13.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.477","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite recent advances in extrusion bioprinting of cell-laden hydrogels, using naturally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge. Here, we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure. The tough hydrogels consisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid (o-nitrobenzyl-grafted hyaluronic acid) and elastin through Schiff's base reaction, and free-radically polymerized gelatin methacryloyl. The incorporation of elastin further improved the elasticity, stretchability (∼170% strain), and toughness (∼45 kJ m−3) of the hydrogels due to the random coiling structure. We used this novel class of hydrogel bioinks to bioprint several complex elastic tissues with good shape retention. Furthermore, in vitro and in vivo experiments also demonstrated that the existence of elastin in the biocompatible bioinks facilitated improved cell behaviors and biological functions of bioprinted tissues, such as cell spreading and phenotype maintenance as well as tissue regeneration. The results confirmed the potential of the elastin-containing tough hydrogel bioinks for bioprinting of 3D complex elastic tissues with biological functionalities, which may find widespread applications in elastic tissue regeneration.

Abstract Image

Abstract Image

挤压生物打印含弹性蛋白的生物活性双网韧性水凝胶,用于复杂弹性组织再生
尽管最近在挤压含细胞水凝胶的生物打印方面取得了进展,但利用天然衍生的生物墨水来生物制造既能满足生物功能要求又具有优异机械性能的复杂弹性组织仍是一项尚未解决的挑战。在这里,我们利用精确设计的具有双网络结构的生物韧性水凝胶生物墨水来应对这一挑战。这种韧性水凝胶由能量耗散型动态交联糖胺聚糖透明质酸(邻硝基苄基接枝透明质酸)和通过席夫碱反应生成的弹性蛋白以及自由基聚合明胶甲基丙烯酰组成。弹性蛋白的加入进一步提高了水凝胶的弹性、伸展性(应变∼170%)和韧性(∼45 kJ m-3),这是因为水凝胶具有随机卷绕结构。我们利用这类新型水凝胶生物墨水进行了多种复杂弹性组织的生物打印,其形状保持良好。此外,体外和体内实验还证明,生物相容性生物墨水中弹性蛋白的存在有助于改善细胞行为和生物打印组织的生物功能,如细胞扩散、表型维持和组织再生。研究结果证实,含弹性蛋白的韧性水凝胶生物墨水具有生物打印具有生物功能的三维复杂弹性组织的潜力,可广泛应用于弹性组织再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信