Florian Beiser, Håvard Heitlo Holm, Kjetil Olsen Lye, Jo Eidsvik
{"title":"Multi-level data assimilation for simplified ocean models","authors":"Florian Beiser, Håvard Heitlo Holm, Kjetil Olsen Lye, Jo Eidsvik","doi":"10.5194/npg-2023-27","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Multi-level Monte Carlo methods have established as a tool in uncertainty quantification for decreasing the computational costs while maintaining the same statistical accuracy as in single-level Monte Carlo. Lately, there have also been theoretical efforts to use similar ideas to facilitate multi-level data assimilation. By applying a multi-level ensemble Kalman filter for assimilating sparse observations of ocean currents into a simplified ocean model based on the shallow-water equations, we study the practical challenges of applying these method to more complex problems. We present numerical results from a realistic test case where small-scale perturbations lead to chaotic behaviour, and in this context we conduct state estimation and drift trajectories forecasting using multi-level ensembles. This represents a new step on the path of making multi-level data assimilation feasible for real-world oceanographic applications.","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":"208 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/npg-2023-27","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Multi-level Monte Carlo methods have established as a tool in uncertainty quantification for decreasing the computational costs while maintaining the same statistical accuracy as in single-level Monte Carlo. Lately, there have also been theoretical efforts to use similar ideas to facilitate multi-level data assimilation. By applying a multi-level ensemble Kalman filter for assimilating sparse observations of ocean currents into a simplified ocean model based on the shallow-water equations, we study the practical challenges of applying these method to more complex problems. We present numerical results from a realistic test case where small-scale perturbations lead to chaotic behaviour, and in this context we conduct state estimation and drift trajectories forecasting using multi-level ensembles. This represents a new step on the path of making multi-level data assimilation feasible for real-world oceanographic applications.
期刊介绍:
Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.