On some identities for confluent hypergeometric functions and Bessel functions

IF 0.9 3区 数学 Q2 MATHEMATICS
Yoshitaka Okuyama
{"title":"On some identities for confluent hypergeometric functions and Bessel functions","authors":"Yoshitaka Okuyama","doi":"10.1016/j.jat.2023.106014","DOIUrl":null,"url":null,"abstract":"<div><p>Mathematical functions<span>, which often appear in mathematical analysis, are referred to as special functions and have been studied over hundreds of years. Many books and dictionaries are available that describe their properties and serve as a foundation of current science. In this paper, we find a new integral representation of the Whittaker function of the first kind and show a relevant summation formula for Kummer’s confluent hypergeometric functions. We also perform the specifications of our identities to link to known and new results.</span></p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001521","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical functions, which often appear in mathematical analysis, are referred to as special functions and have been studied over hundreds of years. Many books and dictionaries are available that describe their properties and serve as a foundation of current science. In this paper, we find a new integral representation of the Whittaker function of the first kind and show a relevant summation formula for Kummer’s confluent hypergeometric functions. We also perform the specifications of our identities to link to known and new results.

关于汇合超几何函数和贝塞尔函数的一些同义词
在数学分析中经常出现的数学函数被称为特殊函数,其研究已有数百年的历史。许多书籍和字典都描述了它们的性质,是当前科学的基础。在本文中,我们找到了惠特克函数第一类的新积分表示,并展示了库默尔汇交超几何函数的相关求和公式。我们还对我们的标识进行了规范,以便与已知结果和新结果联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信