Thu Ha Nguyen, Thi Lan Pham, Anh Quan Cao, Tuan Anh Nguyen, Xuan Minh Vu, Thi My Hanh Le, Van Thuan Le, Seiichi Kawahara, Dai Lam Tran
{"title":"Biocompatible membrane from the natural rubber-grafted-(2-hydroxyethyl methacrylate) and its metal removal application","authors":"Thu Ha Nguyen, Thi Lan Pham, Anh Quan Cao, Tuan Anh Nguyen, Xuan Minh Vu, Thi My Hanh Le, Van Thuan Le, Seiichi Kawahara, Dai Lam Tran","doi":"10.1007/s13233-023-00232-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study describes the preparation and characterization of a green and safe membrane based on a natural polymer for metal adsorption. Natural rubber-grafted-(2-hydroxyethyl methacrylate) with a special nanostructure was synthesized by graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of natural rubber (NR) particles using <i>tert</i>-butylhydroperoxide/tetraethylenepentamine as initiators. Optimal conditions for achieving high conversion and grafting efficiency were identified. Characterization of the as-synthesized samples was performed using Fourier-transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, tensile measurement, swelling degree determination, and cytotoxicity testing. The results revealed that HEMA formed a nanoscale matrix surrounding NR particles, which improved the tensile strength, thermal resistance, and swelling degree of the as-prepared samples. Cytotoxicity testing demonstrated that the membrane was safe for human use, as it did not exhibit toxicity to Vero cells at concentrations up to 1024 µg/mL. Furthermore, the membrane displayed a high adsorption capacity toward Fe<sup>3+</sup> and was well described by Koble-Corrigan isotherm model and the first–second-order kinetic equation. Moreover, the membrane demonstrated excellent recyclability maintaining its adsorption ability towards Fe<sup>3+</sup> ions over five consecutive cycles. Overall, these findings may recommend the NR-HEMA membrane as a promising candidate for metal removal applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div><div><p>The adsorption of metal ions on the natural rubber with PHEMA matrix</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 4","pages":"313 - 324"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-023-00232-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study describes the preparation and characterization of a green and safe membrane based on a natural polymer for metal adsorption. Natural rubber-grafted-(2-hydroxyethyl methacrylate) with a special nanostructure was synthesized by graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of natural rubber (NR) particles using tert-butylhydroperoxide/tetraethylenepentamine as initiators. Optimal conditions for achieving high conversion and grafting efficiency were identified. Characterization of the as-synthesized samples was performed using Fourier-transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, tensile measurement, swelling degree determination, and cytotoxicity testing. The results revealed that HEMA formed a nanoscale matrix surrounding NR particles, which improved the tensile strength, thermal resistance, and swelling degree of the as-prepared samples. Cytotoxicity testing demonstrated that the membrane was safe for human use, as it did not exhibit toxicity to Vero cells at concentrations up to 1024 µg/mL. Furthermore, the membrane displayed a high adsorption capacity toward Fe3+ and was well described by Koble-Corrigan isotherm model and the first–second-order kinetic equation. Moreover, the membrane demonstrated excellent recyclability maintaining its adsorption ability towards Fe3+ ions over five consecutive cycles. Overall, these findings may recommend the NR-HEMA membrane as a promising candidate for metal removal applications.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.