Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode

IF 1.6 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Feng WANG, Jiquan LI, Hongpeng QU, Xiaodong PENG
{"title":"Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode","authors":"Feng WANG, Jiquan LI, Hongpeng QU, Xiaodong PENG","doi":"10.1088/2058-6272/ad0d57","DOIUrl":null,"url":null,"abstract":"Ion temperature gradient (ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code (GKNET) in this work. Different from the traditional equilibrium circular magnetic-surface average (EMSA) method, an advanced algorithm that calculates the perturbed magnetic-surface average (PMSA) of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands. Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method. It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient, i.e. the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm. The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear. Such an electric potential vortex mode may be of essential importance in wide topics, such as the turbulence spreading across magnetic islands, neoclassical tearing mode physics, and also the interaction dynamics between the micro-turbulence and MHD activities.","PeriodicalId":20250,"journal":{"name":"Plasma Science & Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science & Technology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad0d57","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Ion temperature gradient (ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code (GKNET) in this work. Different from the traditional equilibrium circular magnetic-surface average (EMSA) method, an advanced algorithm that calculates the perturbed magnetic-surface average (PMSA) of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands. Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method. It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient, i.e. the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm. The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear. Such an electric potential vortex mode may be of essential importance in wide topics, such as the turbulence spreading across magnetic islands, neoclassical tearing mode physics, and also the interaction dynamics between the micro-turbulence and MHD activities.
磁岛诱导电动势涡旋模式的陀螺动力学模拟
本研究利用基于陀螺动理论的全球湍流传输代码(GKNET)模拟了内嵌静态磁岛的离子温度梯度(ITG)驱动湍流。与传统的平衡圆磁面平均(EMSA)方法不同,本文开发了一种计算电势扰动磁面平均(PMSA)的先进算法,以精确处理磁岛扰动的非圆磁面中的带状流分量。模拟结果表明,使用 EMSA 方法时,磁岛诱导的岛内电动势涡旋结构通常是奇奇偶性的。研究发现,采用 PMSA 算法,在磁岛附近形成陡峭的带状流动梯度,即流动剪切后,奇数对称涡旋可转变为偶数对称涡旋。极截面上的电势涡相位与带状流切变相耦合。这种电势涡模式可能对许多课题具有重要意义,如磁岛上的湍流扩散、新古典撕裂模式物理学,以及微湍流与 MHD 活动之间的相互作用动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Science & Technology
Plasma Science & Technology 物理-物理:流体与等离子体
CiteScore
3.10
自引率
11.80%
发文量
3773
审稿时长
3.8 months
期刊介绍: PST assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. A Publication of the Institute of Plasma Physics, Chinese Academy of Sciences and the Chinese Society of Theoretical and Applied Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信