{"title":"Bioactive polymers for cosmetics: unleashing the potential of Chromohalobacter canadensis 28","authors":"Merve Erginer, Songül Yaşar Yıldız, Margarita Kambourova, Ebru Toksoy Öner","doi":"10.1007/s13233-023-00236-4","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for natural products in the cosmetic industry has led to increased interest in natural polysaccharides that offer biocompatibility, biodegradability, and bioactivity. Microorganisms have emerged as a promising source for large-scale production of these polysaccharides under controlled conditions. Among them, the halophilic bacterium <i>Chromohalobacter canadensis</i> 28 stands out as it produces an exopolymer (Cc EP) consisting of exopolysaccharides (EPS) and poly-gamma-glutamic acid (γ-PGA), making it the first halophilic microorganism known for PGA production. This study explores the potential of crude Cc EP and purified γ-PGA for improving the skin barrier, stimulating collagen and hyaluronic acid production, and facilitating wound closure. Through in-vitro experiments using human epidermal keratinocyte cells (HaCaT) and dermal fibroblast cells (PCS-201-012), both the exopolymers were found to exhibit positive effects on cellular proliferation and the expression of genes related to collagen, hyaluronic acid, involucrin, and filaggrin. Furthermore, in-vitro scratch models demonstrated their ability to enhance wound closure. Based on these promising findings, we propose that Cc EP and purified γ-PGA hold potential as active ingredients in cosmeceutical products. Their ability to promote cell proliferation, improve collagen and hyaluronic acid expression, and enhance wound closure makes them valuable assets for skincare applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div><div><p>Production and effect of <i>Chromohalobacter canadensis</i> 28 exopolymer on human skin cells</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 4","pages":"325 - 336"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-023-00236-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for natural products in the cosmetic industry has led to increased interest in natural polysaccharides that offer biocompatibility, biodegradability, and bioactivity. Microorganisms have emerged as a promising source for large-scale production of these polysaccharides under controlled conditions. Among them, the halophilic bacterium Chromohalobacter canadensis 28 stands out as it produces an exopolymer (Cc EP) consisting of exopolysaccharides (EPS) and poly-gamma-glutamic acid (γ-PGA), making it the first halophilic microorganism known for PGA production. This study explores the potential of crude Cc EP and purified γ-PGA for improving the skin barrier, stimulating collagen and hyaluronic acid production, and facilitating wound closure. Through in-vitro experiments using human epidermal keratinocyte cells (HaCaT) and dermal fibroblast cells (PCS-201-012), both the exopolymers were found to exhibit positive effects on cellular proliferation and the expression of genes related to collagen, hyaluronic acid, involucrin, and filaggrin. Furthermore, in-vitro scratch models demonstrated their ability to enhance wound closure. Based on these promising findings, we propose that Cc EP and purified γ-PGA hold potential as active ingredients in cosmeceutical products. Their ability to promote cell proliferation, improve collagen and hyaluronic acid expression, and enhance wound closure makes them valuable assets for skincare applications.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.