{"title":"Macro and micro connections for slip zone soils of landslide under wetting–drying cycles in the Three Gorges Reservoir area","authors":"","doi":"10.1007/s10346-023-02195-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Temporal variability in the macro-mechanics and microstructure induced by periodic water fluctuations during reservoir operation is widespread but adverse for slip zone soils. Herein, taking the slip zone soils of Huangtupo No. 1 landslide in the Three Gorges Reservoir area as a research case, the consolidation undrained (CU) triaxial tests coupled with wetting–drying cycles are organized to address macroscopic temporal variability of shear strength parameters. Then, quantitative microscopic characterizations are performed based on X-ray diffraction (XRD) and scanning electron microscopy (SEM) combined with mercury compression test (MIT). Eventually, the macro and micro connections are identified via gray rational analysis (GRA) and dynamic time warping (DTW) to be thus mathematized. Moreover, the weakened constitutive model is constructed. The test results show that the temporal variability of macroscopic shear strength parameters can be quantified as negative exponential decay. The wetting–drying cycles prominently contribute to the generation of intra-agglomerate pores (0.9–35 μm). Besides, the inter-granular pores (0.007–0.9 μm) and porosity are the connections to bridge microstructural parameters and macroscopic shear strength parameters. Furthermore, empirical equations for macro and micro connections are tentatively derived; the temporal variability of slip zone soils is invited to appropriately model the weakening laws of stress–strain. This study is expected to provide ingenious perspectives and promising references in stability evaluation and even disaster prevention of reservoir landslides.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"17 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-023-02195-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal variability in the macro-mechanics and microstructure induced by periodic water fluctuations during reservoir operation is widespread but adverse for slip zone soils. Herein, taking the slip zone soils of Huangtupo No. 1 landslide in the Three Gorges Reservoir area as a research case, the consolidation undrained (CU) triaxial tests coupled with wetting–drying cycles are organized to address macroscopic temporal variability of shear strength parameters. Then, quantitative microscopic characterizations are performed based on X-ray diffraction (XRD) and scanning electron microscopy (SEM) combined with mercury compression test (MIT). Eventually, the macro and micro connections are identified via gray rational analysis (GRA) and dynamic time warping (DTW) to be thus mathematized. Moreover, the weakened constitutive model is constructed. The test results show that the temporal variability of macroscopic shear strength parameters can be quantified as negative exponential decay. The wetting–drying cycles prominently contribute to the generation of intra-agglomerate pores (0.9–35 μm). Besides, the inter-granular pores (0.007–0.9 μm) and porosity are the connections to bridge microstructural parameters and macroscopic shear strength parameters. Furthermore, empirical equations for macro and micro connections are tentatively derived; the temporal variability of slip zone soils is invited to appropriately model the weakening laws of stress–strain. This study is expected to provide ingenious perspectives and promising references in stability evaluation and even disaster prevention of reservoir landslides.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database