Atomic-level coordination structures meet graphitic carbon nitride (g-C3N4) for photocatalysis: Energy conversion and environmental remediation

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Haiwei Su, Haibo Yin, Rong Wang, Yunlong Wang, William Orbell, Yue Peng, Junhua Li
{"title":"Atomic-level coordination structures meet graphitic carbon nitride (g-C3N4) for photocatalysis: Energy conversion and environmental remediation","authors":"Haiwei Su, Haibo Yin, Rong Wang, Yunlong Wang, William Orbell, Yue Peng, Junhua Li","doi":"10.1016/j.apcatb.2023.123683","DOIUrl":null,"url":null,"abstract":"<p>Up to date, the single-atom catalysts (SACs) have provided a sustainable solution for mitigating the energy crisis and improving environmental quality. The enhanced efficiency and selectivity in various chemical reactions relies on the rational design of metal atom coordination environments and a deep understanding of the underlying mechanisms. The atomic-level coordination between metal species and graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) support offers potential unique characteristics and advantages. This review summarizes and provides insights into the recent progress of g-C<sub>3</sub>N<sub>4</sub>-based SACs. We discuss the principles and benefits of introducing atomic-level metal sites on g-C<sub>3</sub>N<sub>4</sub>, as well as essential preparation methods and characterization techniques. We also explore the applications of g-C<sub>3</sub>N<sub>4</sub>-based SACs in photocatalytic energy conversion and environmental remediation to gain a comprehensive understanding of how single-metal sites impact activity, selectivity, and stability. Finally, we highlight both the opportunities and challenges for development of g-C<sub>3</sub>N<sub>4</sub>-based SACs in the future.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2023.123683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Up to date, the single-atom catalysts (SACs) have provided a sustainable solution for mitigating the energy crisis and improving environmental quality. The enhanced efficiency and selectivity in various chemical reactions relies on the rational design of metal atom coordination environments and a deep understanding of the underlying mechanisms. The atomic-level coordination between metal species and graphitic carbon nitride (g-C3N4) support offers potential unique characteristics and advantages. This review summarizes and provides insights into the recent progress of g-C3N4-based SACs. We discuss the principles and benefits of introducing atomic-level metal sites on g-C3N4, as well as essential preparation methods and characterization techniques. We also explore the applications of g-C3N4-based SACs in photocatalytic energy conversion and environmental remediation to gain a comprehensive understanding of how single-metal sites impact activity, selectivity, and stability. Finally, we highlight both the opportunities and challenges for development of g-C3N4-based SACs in the future.

Abstract Image

用于光催化的氮化石墨碳(g-C3N4)的原子级配位结构:能源转换与环境修复
迄今为止,单原子催化剂(SAC)为缓解能源危机和改善环境质量提供了一种可持续的解决方案。提高各种化学反应的效率和选择性有赖于金属原子配位环境的合理设计和对潜在机理的深入理解。金属物种与石墨氮化碳(g-C3N4)支架之间的原子级配位具有潜在的独特性和优势。本综述总结了基于 g-C3N4 的 SAC 的最新进展,并提供了深入见解。我们讨论了在 g-C3N4 上引入原子级金属位点的原理和好处,以及基本的制备方法和表征技术。我们还探讨了基于 g-C3N4 的 SAC 在光催化能量转换和环境修复方面的应用,以全面了解单金属位点如何影响活性、选择性和稳定性。最后,我们强调了未来开发基于 g-C3N4 的 SAC 的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信