{"title":"Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics","authors":"Ming-hua Yang, Si-ming Huang, Jin-yi Sun","doi":"10.1007/s10255-024-1119-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of </p><div><div><span>$$\\left\\{ \\begin{gathered}\n\\begin{array}{*{20}{c}}\n{u_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {u^\\varepsilon } - \\Delta {u^\\varepsilon } + \\nabla {P^\\varepsilon } = \\Delta {\\phi ^\\varepsilon }\\nabla {\\phi ^\\varepsilon },}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{\\nabla\\cdot {u^\\varepsilon } = 0,}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \n\\end{array} \\hfill \\\\begin{array}{*{20}{c}}\n{n_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {n^\\varepsilon } - \\Delta {n^\\varepsilon } =- \\nabla\\cdot ({n^\\varepsilon }\\nabla {\\phi ^\\varepsilon }),}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{c_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {c^\\varepsilon } - \\Delta {c^\\varepsilon } = \\nabla\\cdot ({c^\\varepsilon }\\nabla {\\phi ^\\varepsilon }),}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \n\\end{array} \\hfill \\\\begin{array}{*{20}{c}}\n{{\\varepsilon ^{ - 1}}\\phi _t^\\varepsilon= \\Delta {\\phi ^\\varepsilon } - {n^\\varepsilon } + {c^\\varepsilon },}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{({u^\\varepsilon },{n^\\varepsilon },{c^\\varepsilon },{\\phi ^\\varepsilon })\\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\\phi _0})},} \\right.}&{in{\\text{ }}{\\mathbb{R}^3}} \n\\end{array} \\hfill \\\\ \n\\end{gathered}\\right.$$</span></div></div><p> involving with a positive, large parameter <i>ϵ</i>. The present work show a case that (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) stabilizes to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>):= (<i>u, n, c</i>) uniformly with respect to the time variable as <i>ϵ</i> → + ∞ with respect to the strong topology in a certain Fourier-Herz space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1119-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of
involving with a positive, large parameter ϵ. The present work show a case that (uϵ, nϵ, cϵ) stabilizes to (u∞, n∞, c∞):= (u, n, c) uniformly with respect to the time variable as ϵ → + ∞ with respect to the strong topology in a certain Fourier-Herz space.