{"title":"Existence of Positive Solutions to a Fractional-Kirchhoff System","authors":"Peng-fei Li, Jun-hui Xie, Dan Mu","doi":"10.1007/s10255-024-1111-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let Ω be a bounded smooth domain in ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 3). Assuming that 0 < <i>s</i> < 1, <span>\\(1 < p,q \\le {{N + 2s} \\over {N - 2s}}\\)</span> with <span>\\((p,q) \\ne ({{N + 2s} \\over {N - 2s}},{{N + 2s} \\over {N - 2s}})\\)</span>, and <i>a, b</i> > 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,</p><div><div><span>$$\\left\\{{\\matrix{{(a + b[u]_s^2){{(- \\Delta)}^s}u = {v^p} + {h_1}(x,u,v,\\nabla u,\\nabla v),} \\hfill & {x \\in \\Omega,} \\hfill \\cr {{{(- \\Delta)}^s}v = {u^q} + {h_2}(x,u,v,\\nabla u,\\nabla v),} \\hfill & {x \\in \\Omega,} \\hfill \\cr {u,v > 0,} \\hfill & {x \\in \\Omega,} \\hfill \\cr {u = v = 0,} \\hfill & {x \\in {\\mathbb{R}^N}\\backslash \\Omega.} \\hfill \\cr}}\\right.$$</span></div></div><p>Under some assumptions of <i>h</i><sub><i>i</i></sub>(<i>x, u, v</i>, ∇<i>u</i>, ∇<i>v</i>)(<i>i</i> = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"225 - 240"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1111-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let Ω be a bounded smooth domain in ℝN (N ≥ 3). Assuming that 0 < s < 1, \(1 < p,q \le {{N + 2s} \over {N - 2s}}\) with \((p,q) \ne ({{N + 2s} \over {N - 2s}},{{N + 2s} \over {N - 2s}})\), and a, b > 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,
Under some assumptions of hi(x, u, v, ∇u, ∇v)(i = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.