On the Difference Between the Skew-rank of an Oriented Graph and the Rank of Its Underlying Graph

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1103-x
Jia-min Zhu, Bo-jun Yuan, Yi Wang
{"title":"On the Difference Between the Skew-rank of an Oriented Graph and the Rank of Its Underlying Graph","authors":"Jia-min Zhu,&nbsp;Bo-jun Yuan,&nbsp;Yi Wang","doi":"10.1007/s10255-024-1103-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a simple graph and <i>G</i><sup><i>σ</i></sup> be the oriented graph with <i>G</i> as its underlying graph and orientation <i>σ</i>. The rank of the adjacency matrix of <i>G</i> is called the rank of <i>G</i> and is denoted by <i>r</i>(<i>G</i>). The rank of the skew-adjacency matrix of <i>G</i><sup><i>σ</i></sup> is called the skew-rank of <i>G</i><sup><i>σ</i></sup> and is denoted by <i>sr</i>(<i>G</i><sup><i>σ</i></sup>). Let <i>V</i>(<i>G</i>) be the vertex set and <i>E</i>(<i>G</i>) be the edge set of <i>G</i>. The cyclomatic number of <i>G</i>, denoted by <i>c</i>(<i>G</i>), is equal to ∣<i>E</i>(<i>G</i>)∣ − ∣<i>V</i>(<i>G</i>)∣+ <i>ω</i>(<i>G</i>), where <i>ω</i>(<i>G</i>) is the number of the components of <i>G</i>. It is proved for any oriented graph <i>G</i><sup><i>σ</i></sup> that −2<i>c</i>(<i>G</i>) ⩽ sr(<i>G</i><sup><i>σ</i></sup>) − <i>r</i>(<i>G</i>) ⩽ 2<i>c</i>(<i>G</i>). In this paper, we prove that there is no oriented graph <i>G</i><sup><i>σ</i></sup> with <i>sr</i>(<i>G</i><sup><i>σ</i></sup>) − <i>r</i>(<i>G</i>) = 2<i>c</i>(<i>G</i>)−1, and in addition, there are in nitely many oriented graphs <i>G</i><sup><i>σ</i></sup> with connected underlying graphs such that <i>c</i>(<i>G</i>) = <i>k</i> and <i>sr</i>(<i>G</i><sup><i>σ</i></sup>)−<i>r</i>(<i>G</i>) = 2<i>c</i>(<i>G</i>)−ℓ for every integers <i>k</i>, ℓ satisfying 0 ⩽ ℓ ⩽ 4<i>k</i> and ℓ≠ 1.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1103-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple graph and Gσ be the oriented graph with G as its underlying graph and orientation σ. The rank of the adjacency matrix of G is called the rank of G and is denoted by r(G). The rank of the skew-adjacency matrix of Gσ is called the skew-rank of Gσ and is denoted by sr(Gσ). Let V(G) be the vertex set and E(G) be the edge set of G. The cyclomatic number of G, denoted by c(G), is equal to ∣E(G)∣ − ∣V(G)∣+ ω(G), where ω(G) is the number of the components of G. It is proved for any oriented graph Gσ that −2c(G) ⩽ sr(Gσ) − r(G) ⩽ 2c(G). In this paper, we prove that there is no oriented graph Gσ with sr(Gσ) − r(G) = 2c(G)−1, and in addition, there are in nitely many oriented graphs Gσ with connected underlying graphs such that c(G) = k and sr(Gσ)−r(G) = 2c(G)−ℓ for every integers k, ℓ satisfying 0 ⩽ ℓ ⩽ 4k and ℓ≠ 1.

分享
查看原文
论定向图的倾斜秩与其底层图的秩之间的差异
设 G 是简单图,Gσ 是以 G 为底层图且方向为 σ 的定向图。G 的邻接矩阵的秩称为 G 的秩,用 r(G) 表示。Gσ 的倾斜相邻矩阵的秩称为 Gσ 的倾斜秩,用 sr(Gσ) 表示。让 V(G) 是 G 的顶点集,E(G) 是 G 的边集。G 的循环数用 c(G) 表示,等于 ∣E(G)∣ -∣V(G)∣+ ω(G),其中 ω(G) 是 G 的分量数。对于任何有向图 Gσ 都可以证明 -2c(G) ⩽ sr(Gσ) - r(G) ⩽ 2c(G)。本文证明不存在 sr(Gσ) - r(G) = 2c(G)-1的面向图 Gσ,此外、对于满足 0 ⩽ ℓ ⩽ 4k 和 ℓ≠ 1 的每一个整数 k、ℓ,都有无限多个底层图相连的定向图 Gσ,且 c(G) = k 和 sr(Gσ)-r(G) = 2c(G)-ℓ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信