Variational methods for solving numerically magnetostatic systems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Patrick Ciarlet Jr., Erell Jamelot
{"title":"Variational methods for solving numerically magnetostatic systems","authors":"Patrick Ciarlet Jr.,&nbsp;Erell Jamelot","doi":"10.1007/s10444-023-10089-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study some techniques for solving numerically magnetostatic systems. We consider fairly general assumptions on the magnetic permeability tensor. It is elliptic, but can be nonhermitian. In particular, we revisit existing classical variational methods and propose new numerical methods. The numerical approximation is either based on the classical edge finite elements or on continuous Lagrange finite elements. For the first type of discretization, we rely on the design of a new, mixed variational formulation that is obtained with the help of <i>T</i>-coercivity. The numerical method can be related to a perturbed approach for solving mixed problems in electromagnetism. For the second type of discretization, we rely on an augmented variational formulation obtained with the help of the weighted regularization method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-023-10089-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study some techniques for solving numerically magnetostatic systems. We consider fairly general assumptions on the magnetic permeability tensor. It is elliptic, but can be nonhermitian. In particular, we revisit existing classical variational methods and propose new numerical methods. The numerical approximation is either based on the classical edge finite elements or on continuous Lagrange finite elements. For the first type of discretization, we rely on the design of a new, mixed variational formulation that is obtained with the help of T-coercivity. The numerical method can be related to a perturbed approach for solving mixed problems in electromagnetism. For the second type of discretization, we rely on an augmented variational formulation obtained with the help of the weighted regularization method.

数值求解磁静力系统的变量方法
摘要 本文研究了数值求解磁静力系统的一些技术。我们考虑了磁导张量的一般假设。它是椭圆的,但也可以是非全息的。特别是,我们重新审视了现有的经典变分方法,并提出了新的数值方法。数值近似要么基于经典边缘有限元,要么基于连续拉格朗日有限元。对于第一种离散化类型,我们依赖于设计一种新的混合变分公式,该公式是在 T-coercivity 的帮助下获得的。该数值方法与解决电磁学混合问题的扰动方法有关。对于第二种离散化,我们依赖于借助加权正则化方法获得的增强变分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信