Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Kai-Wei Chang, Madhumithra Subramanian Karthikesh, Yunhao Zhu, Heather M. Hudson, Scott Barbay, David Bundy, David J. Guggenmos, Shawn Frost, Randolph J. Nudo, Xueding Wang, Xinmai Yang
{"title":"Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation","authors":"Kai-Wei Chang,&nbsp;Madhumithra Subramanian Karthikesh,&nbsp;Yunhao Zhu,&nbsp;Heather M. Hudson,&nbsp;Scott Barbay,&nbsp;David Bundy,&nbsp;David J. Guggenmos,&nbsp;Shawn Frost,&nbsp;Randolph J. Nudo,&nbsp;Xueding Wang,&nbsp;Xinmai Yang","doi":"10.1002/jbio.202300347","DOIUrl":null,"url":null,"abstract":"<p>Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300347","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.

Abstract Image

外周机械刺激诱发松鼠猴皮层反应的光声成像。
非人灵长类动物(NHP)是研究神经元活动的重要模型。新兴的光声成像模式为研究高灵敏度和高空间分辨率的非人灵长类动物大脑提供了绝佳的工具。本研究利用光声显微镜(PAM)设备对外周机械刺激引起的脑血流动力学变化进行了无标记定量表征。对成年松鼠猴躯体感觉皮层区域内的 5 × 5 毫米区域进行了成像。对皮层的 PAM 图像进行了深度、全连接神经网络表征和应用,以增强前肢手指受到机械刺激后的血管结构。神经网络显著提高了 PAM 图像的质量,同时保留了血液动力学反应。根据改进后的 PAM 图像,对机械刺激的功能反应进行了表征。这项研究证明了 PAM 与机器学习相结合用于 NHP 大脑功能成像的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信