Joana Lima Grilo Fernandes da Silva, Sérgio Miguel Barroso Gonçalves, Hugo Humberto Plácido da Silva, Miguel Pedro Tavares da Silva
{"title":"Three-dimensional printed exoskeletons and orthoses for the upper limb-A systematic review.","authors":"Joana Lima Grilo Fernandes da Silva, Sérgio Miguel Barroso Gonçalves, Hugo Humberto Plácido da Silva, Miguel Pedro Tavares da Silva","doi":"10.1097/PXR.0000000000000318","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review aims to assess and summarize the current landscape in exoskeletons and orthotic solutions developed for upper limb medical assistance, which are partly or fully produced using 3-dimensional printing technologies and contain at least the elbow or the shoulder joints. The initial search was conducted on Web of Science, PubMed, and IEEEXplore, resulting in 92 papers, which were reduced to 72 after removal of duplicates. From the application of the inclusion and exclusion criteria and selection questionnaire, 33 papers were included in the review, being divided according to the analyzed joints. The analysis of the selected papers allowed for the identification of different solutions that vary in terms of their target application, actuation type, 3-dimensional printing techniques, and material selection, among others. The results show that there has been far more research on the elbow joint than on the shoulder joint, which can be explained by the relative complexity of the latter. Moreover, the findings of this study also indicate that there is still a gap between the research conducted on these devices and their practical use in real-world conditions. Based on current trends, it is anticipated that the future of 3-dimensional printed exoskeletons will revolve around the use of flexible and high-performance materials, coupled with actuated devices. These advances have the potential to replace the conventional fabrication methods of exoskeletons with technologies based on additive manufacturing.</p>","PeriodicalId":49657,"journal":{"name":"Prosthetics and Orthotics International","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosthetics and Orthotics International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PXR.0000000000000318","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic review aims to assess and summarize the current landscape in exoskeletons and orthotic solutions developed for upper limb medical assistance, which are partly or fully produced using 3-dimensional printing technologies and contain at least the elbow or the shoulder joints. The initial search was conducted on Web of Science, PubMed, and IEEEXplore, resulting in 92 papers, which were reduced to 72 after removal of duplicates. From the application of the inclusion and exclusion criteria and selection questionnaire, 33 papers were included in the review, being divided according to the analyzed joints. The analysis of the selected papers allowed for the identification of different solutions that vary in terms of their target application, actuation type, 3-dimensional printing techniques, and material selection, among others. The results show that there has been far more research on the elbow joint than on the shoulder joint, which can be explained by the relative complexity of the latter. Moreover, the findings of this study also indicate that there is still a gap between the research conducted on these devices and their practical use in real-world conditions. Based on current trends, it is anticipated that the future of 3-dimensional printed exoskeletons will revolve around the use of flexible and high-performance materials, coupled with actuated devices. These advances have the potential to replace the conventional fabrication methods of exoskeletons with technologies based on additive manufacturing.
期刊介绍:
Prosthetics and Orthotics International is an international, multidisciplinary journal for all professionals who have an interest in the medical, clinical, rehabilitation, technical, educational and research aspects of prosthetics, orthotics and rehabilitation engineering, as well as their related topics.