{"title":"[Up to Date of Cyanobacterial Natural Products].","authors":"Tatsufumi Okino","doi":"10.1248/yakushi.23-00161-2","DOIUrl":null,"url":null,"abstract":"<p><p>More than 2000 compounds have been reported from cyanobacteria. The most successful example is dolastatin 10, of which a related compound monomethylauristatin E is used as antibody-drug conjugate (ADC) for Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Recently genome-based analyses by Piel led to the discovery of novel compounds from cyanobacteria. W. H. Gerwick found a potential as anti-SARS-CoV-2 agent in gallinamide A, which was reported as a cathepsin L inhibitor. In our group columbamides were isolated from the marine cyanobacterium Moorena bouillonii. The geometry of the double bond was determined by the coupling constant obtained using non-decoupled heteronuclear single quantum coherence (HSQC). The configuration of chloromethine in a long-chain acyl moiety was determined by the Ohrui method at room temperature using a chiral HPLC column. Columbamide D showed biosurfactant activity. One strain many compounds (OSMAC) is a method to discover new compounds by changing culture conditions. Prior to our experiments, attempts to apply OSMAC in cyanobacteria resulted in the induction or up-regulation of only known compounds. The heat shock culture of the freshwater cyanobacterium Microcystis aeruginosa up-regulated a ribosomal peptide argicyclamide C. At the same time, we discovered bis-prenylated and monoprenylated argicyclamides A and B. More recently iron-limited culture produced hydroxylated argicyclamide A. OSMAC and genome-based screening could lead the discovery of unique biologically active compounds from cyanobacteria.</p>","PeriodicalId":23810,"journal":{"name":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","volume":"144 1","pages":"27-32"},"PeriodicalIF":0.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/yakushi.23-00161-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
More than 2000 compounds have been reported from cyanobacteria. The most successful example is dolastatin 10, of which a related compound monomethylauristatin E is used as antibody-drug conjugate (ADC) for Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Recently genome-based analyses by Piel led to the discovery of novel compounds from cyanobacteria. W. H. Gerwick found a potential as anti-SARS-CoV-2 agent in gallinamide A, which was reported as a cathepsin L inhibitor. In our group columbamides were isolated from the marine cyanobacterium Moorena bouillonii. The geometry of the double bond was determined by the coupling constant obtained using non-decoupled heteronuclear single quantum coherence (HSQC). The configuration of chloromethine in a long-chain acyl moiety was determined by the Ohrui method at room temperature using a chiral HPLC column. Columbamide D showed biosurfactant activity. One strain many compounds (OSMAC) is a method to discover new compounds by changing culture conditions. Prior to our experiments, attempts to apply OSMAC in cyanobacteria resulted in the induction or up-regulation of only known compounds. The heat shock culture of the freshwater cyanobacterium Microcystis aeruginosa up-regulated a ribosomal peptide argicyclamide C. At the same time, we discovered bis-prenylated and monoprenylated argicyclamides A and B. More recently iron-limited culture produced hydroxylated argicyclamide A. OSMAC and genome-based screening could lead the discovery of unique biologically active compounds from cyanobacteria.