Alireza Rangrazjeddi, Andrés D González, Kash Barker
{"title":"Game-theoretic algorithm for interdependent infrastructure network restoration in a decentralized environment.","authors":"Alireza Rangrazjeddi, Andrés D González, Kash Barker","doi":"10.1111/risa.14269","DOIUrl":null,"url":null,"abstract":"<p><p>Having reliable interdependent infrastructure networks is vital for well-being of a safe and productive society. Systems are vulnerable to failure or performance loss due to their interdependence among various networks, as each failure can propagate through the whole system. Although the conventional view has concentrated on optimizing the restoration of critical interdependent infrastructure networks using a centralized approach, having a lone actor as a decision-maker in the system is substantially different from the actual restoration decision environment, wherein infrastructure utilities make their own decisions about how to restore their network service. In a decentralized environment, the definition of whole system optimality does not apply as each decision-maker's interest may not converge with the others. Subsequently, this results in each decision-maker developing its own reward functions. Therefore, in this study, we address the concern of having multiple decision-makers with various payoff functions in interdependent networks by proposing a decentralized game theory algorithm for finding Nash equilibria solutions for network restoration in postdisaster situations.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.14269","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Having reliable interdependent infrastructure networks is vital for well-being of a safe and productive society. Systems are vulnerable to failure or performance loss due to their interdependence among various networks, as each failure can propagate through the whole system. Although the conventional view has concentrated on optimizing the restoration of critical interdependent infrastructure networks using a centralized approach, having a lone actor as a decision-maker in the system is substantially different from the actual restoration decision environment, wherein infrastructure utilities make their own decisions about how to restore their network service. In a decentralized environment, the definition of whole system optimality does not apply as each decision-maker's interest may not converge with the others. Subsequently, this results in each decision-maker developing its own reward functions. Therefore, in this study, we address the concern of having multiple decision-makers with various payoff functions in interdependent networks by proposing a decentralized game theory algorithm for finding Nash equilibria solutions for network restoration in postdisaster situations.
期刊介绍:
Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include:
• Human health and safety risks
• Microbial risks
• Engineering
• Mathematical modeling
• Risk characterization
• Risk communication
• Risk management and decision-making
• Risk perception, acceptability, and ethics
• Laws and regulatory policy
• Ecological risks.