Dongyan Zhang, Haifeng Ji, Sixin Wang, Meixia Chen, Hui Liu
{"title":"Parity changed fecal microbiota of sows and its correlation with milk long-chain fatty acid profiles.","authors":"Dongyan Zhang, Haifeng Ji, Sixin Wang, Meixia Chen, Hui Liu","doi":"10.1007/s00253-023-12852-2","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this study was to characterize the fecal microbiota profiles of gestating sows, along with the fecal microbiota and milk fatty acid contents of lactating sows and their correlations with reproductive performance at different parities. The results showed that the microbiota of third parity gestating sows contained a greater abundance of Prevotella compared to the other two parity groups, while lactating sows exhibiting higher reproductive performance at fifth parity exhibited a greater abundance of Lactobacillus species. The lactating sows with higher reproductive performance also exhibited higher total monounsaturated fatty acid (MUFA) and higher total polyunsaturated fatty acid (PUFA) levels relative to sows with lower reproductive performance at all three analyzed parities, especially sows at fifth parity produced the lowest total saturated fatty acid (SFA) levels, and showed the highest C18:1n9c and C18:2n6c concentrations. In correlational analyses, the abundance of Oligella, Lactobacillus, and Corynebacterium was highly positively correlated with C18:1n9c, C18:2n6c, and C20:4n6. Overall, these results provide a rational basis for efforts to improve sow reproductive performance through the provision of precisely regulated nutrition. KEY POINTS: • Clear differences in the fecal microbiota were evident between sows of different parities. • Lactating sows with high reproductive performance showed distinct milk fatty acid profiles.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"4"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-023-12852-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of this study was to characterize the fecal microbiota profiles of gestating sows, along with the fecal microbiota and milk fatty acid contents of lactating sows and their correlations with reproductive performance at different parities. The results showed that the microbiota of third parity gestating sows contained a greater abundance of Prevotella compared to the other two parity groups, while lactating sows exhibiting higher reproductive performance at fifth parity exhibited a greater abundance of Lactobacillus species. The lactating sows with higher reproductive performance also exhibited higher total monounsaturated fatty acid (MUFA) and higher total polyunsaturated fatty acid (PUFA) levels relative to sows with lower reproductive performance at all three analyzed parities, especially sows at fifth parity produced the lowest total saturated fatty acid (SFA) levels, and showed the highest C18:1n9c and C18:2n6c concentrations. In correlational analyses, the abundance of Oligella, Lactobacillus, and Corynebacterium was highly positively correlated with C18:1n9c, C18:2n6c, and C20:4n6. Overall, these results provide a rational basis for efforts to improve sow reproductive performance through the provision of precisely regulated nutrition. KEY POINTS: • Clear differences in the fecal microbiota were evident between sows of different parities. • Lactating sows with high reproductive performance showed distinct milk fatty acid profiles.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.