Integrated analysis of differently expressed microRNAs and mRNAs at different postnatal stages reveals intramuscular fat deposition regulation in goats (Capra hircus)
Wenyang Zhang, Yu Liao, Peng Shao, Yuling Yang, Lian Huang, Zhanyu Du, Changhui Zhang, Yong Wang, Yaqiu Lin, Jiangjiang Zhu
{"title":"Integrated analysis of differently expressed microRNAs and mRNAs at different postnatal stages reveals intramuscular fat deposition regulation in goats (Capra hircus)","authors":"Wenyang Zhang, Yu Liao, Peng Shao, Yuling Yang, Lian Huang, Zhanyu Du, Changhui Zhang, Yong Wang, Yaqiu Lin, Jiangjiang Zhu","doi":"10.1111/age.13384","DOIUrl":null,"url":null,"abstract":"<p>Intramuscular fat refers to the adipose tissue distributed in the muscle. It is an important indicator that affects the quality of goat meat, and can directly affect the tenderness and flavor of goat meat. Our previous study revealed the mRNA that may be crucial for intramuscular fat deposition during goat growth; however, how the microRNAs (miRNAs) are involved in the process is largely unclear. In the present study, a total of 401 known miRNAs and 120 goat novel miRNAs, including 110 differentially expressed (DE) miRNAs, were identified among longissimus dorsi from three growth stages (2, 9, and 24 months) by miRNA sequencing. Combining analysis of the DE mRNAs and DE miRNAs was then performed by miRDB and miRwalk, and miR-145-5p and <i>FOXO1</i>, miR-487b-3p, and PPARG coactivator 1 α (<i>PPARGC1A</i>), miR-345-3p, and solute carrier family 2 member 4 (<i>SLC2A4</i>), etc. were shown to closely associate with lipid metabolism, which was then validated by a correlation analysis. The final DE mRNAs were significantly enriched in fatty acid transmembrane transport, fatty acid homeostasis, apelin signaling pathway, glucagon signaling pathway, insulin signaling pathway, and AMPK signaling pathway by gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Besides, miR-145-5p showed a certain effect on goat intramuscular fat metabolism by acting on the possible target gene Forkhead Box O1 (<i>FOXO1</i>). These data provide some theoretical support for improving the quality of goat meat.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13384","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intramuscular fat refers to the adipose tissue distributed in the muscle. It is an important indicator that affects the quality of goat meat, and can directly affect the tenderness and flavor of goat meat. Our previous study revealed the mRNA that may be crucial for intramuscular fat deposition during goat growth; however, how the microRNAs (miRNAs) are involved in the process is largely unclear. In the present study, a total of 401 known miRNAs and 120 goat novel miRNAs, including 110 differentially expressed (DE) miRNAs, were identified among longissimus dorsi from three growth stages (2, 9, and 24 months) by miRNA sequencing. Combining analysis of the DE mRNAs and DE miRNAs was then performed by miRDB and miRwalk, and miR-145-5p and FOXO1, miR-487b-3p, and PPARG coactivator 1 α (PPARGC1A), miR-345-3p, and solute carrier family 2 member 4 (SLC2A4), etc. were shown to closely associate with lipid metabolism, which was then validated by a correlation analysis. The final DE mRNAs were significantly enriched in fatty acid transmembrane transport, fatty acid homeostasis, apelin signaling pathway, glucagon signaling pathway, insulin signaling pathway, and AMPK signaling pathway by gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Besides, miR-145-5p showed a certain effect on goat intramuscular fat metabolism by acting on the possible target gene Forkhead Box O1 (FOXO1). These data provide some theoretical support for improving the quality of goat meat.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.