Improved quantitative analysis of tenuifolin using hydrolytic continuous-flow system to build prediction models for its content based on near-infrared spectroscopy
{"title":"Improved quantitative analysis of tenuifolin using hydrolytic continuous-flow system to build prediction models for its content based on near-infrared spectroscopy","authors":"Tatsuki Kitazoe, Chisato Usui, Eiichi Kodaira, Takuro Maruyama, Noriaki Kawano, Hiroyuki Fuchino, Kazuhiko Yamamoto, Yasushi Kitano, Nobuo Kawahara, Kayo Yoshimatsu, Tatsuya Shirahata, Yoshinori Kobayashi","doi":"10.1007/s11418-023-01764-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study used two types of analyses and statistical calculations on powdered samples of Polygala root (PR) and Senega root (SR): (1) determination of saponin content by an independently developed quantitative analysis of tenuifolin content using a flow reactor, and (2) near-infrared spectroscopy (NIR) using crude drug powders as direct samples for metabolic profiling. Furthermore, a prediction model for tenuifolin content was developed and validated using multivariate analysis based on the results of (1) and (2). The goal of this study was to develop a rapid analytical method utilizing the saponin content and explore the possibility of quality control through a wide-area survey of crude drugs using NIR spectroscopy. Consequently, various parameters and appropriate wavelengths were examined in the regression analysis, and a model with a reasonable contribution rate and prediction accuracy was successfully developed. In this case, the wavenumber contributing to the model was consistent with that of tenuifolin, confirming that this model was based on saponin content. In this series of analyses, we have succeeded in developing a model that can quickly estimate saponin content without post-processing and have demonstrated a brief way to perform quality control of crude drugs in the clinical field and on the market.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":"78 2","pages":"296 - 311"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11418-023-01764-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study used two types of analyses and statistical calculations on powdered samples of Polygala root (PR) and Senega root (SR): (1) determination of saponin content by an independently developed quantitative analysis of tenuifolin content using a flow reactor, and (2) near-infrared spectroscopy (NIR) using crude drug powders as direct samples for metabolic profiling. Furthermore, a prediction model for tenuifolin content was developed and validated using multivariate analysis based on the results of (1) and (2). The goal of this study was to develop a rapid analytical method utilizing the saponin content and explore the possibility of quality control through a wide-area survey of crude drugs using NIR spectroscopy. Consequently, various parameters and appropriate wavelengths were examined in the regression analysis, and a model with a reasonable contribution rate and prediction accuracy was successfully developed. In this case, the wavenumber contributing to the model was consistent with that of tenuifolin, confirming that this model was based on saponin content. In this series of analyses, we have succeeded in developing a model that can quickly estimate saponin content without post-processing and have demonstrated a brief way to perform quality control of crude drugs in the clinical field and on the market.
期刊介绍:
The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers:
-chemistry of natural products
-biochemistry of medicinal plants
-pharmacology of natural products and herbs, including Kampo formulas and traditional herbs
-botanical anatomy
-cultivation of medicinal plants.
The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.