{"title":"Benchmarking visual SLAM methods in mirror environments","authors":"Peter Herbert, Jing Wu, Ze Ji, Yu-Kun Lai","doi":"10.1007/s41095-022-0329-x","DOIUrl":null,"url":null,"abstract":"<p>Visual simultaneous localisation and mapping (vSLAM) finds applications for indoor and outdoor navigation that routinely subjects it to visual complexities, particularly mirror reflections. The effect of mirror presence (time visible and its average size in the frame) was hypothesised to impact localisation and mapping performance, with systems using direct techniques expected to perform worse. Thus, a dataset, MirrEnv, of image sequences recorded in mirror environments, was collected, and used to evaluate the performance of existing representative methods. RGBD ORB-SLAM3 and BundleFusion appear to show moderate degradation of absolute trajectory error with increasing mirror duration, whilst the remaining results did not show significantly degraded localisation performance. The mesh maps generated proved to be very inaccurate, with real and virtual reflections colliding in the reconstructions. A discussion is given of the likely sources of error and robustness in mirror environments, outlining future directions for validating and improving vSLAM performance in the presence of planar mirrors. The MirrEnv dataset is available at https://doi.org/10.17035/d.2023.0292477898.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"39 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-022-0329-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Visual simultaneous localisation and mapping (vSLAM) finds applications for indoor and outdoor navigation that routinely subjects it to visual complexities, particularly mirror reflections. The effect of mirror presence (time visible and its average size in the frame) was hypothesised to impact localisation and mapping performance, with systems using direct techniques expected to perform worse. Thus, a dataset, MirrEnv, of image sequences recorded in mirror environments, was collected, and used to evaluate the performance of existing representative methods. RGBD ORB-SLAM3 and BundleFusion appear to show moderate degradation of absolute trajectory error with increasing mirror duration, whilst the remaining results did not show significantly degraded localisation performance. The mesh maps generated proved to be very inaccurate, with real and virtual reflections colliding in the reconstructions. A discussion is given of the likely sources of error and robustness in mirror environments, outlining future directions for validating and improving vSLAM performance in the presence of planar mirrors. The MirrEnv dataset is available at https://doi.org/10.17035/d.2023.0292477898.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.