A. Chilingarian , T. Karapetyan , B. Sargsyan , J. Knapp , M. Walter , T. Rehm
{"title":"Energy spectra of the first TGE observed on Zugspitze by the SEVAN light detector compared with the energetic TGE observed on Aragats","authors":"A. Chilingarian , T. Karapetyan , B. Sargsyan , J. Knapp , M. Walter , T. Rehm","doi":"10.1016/j.astropartphys.2024.102924","DOIUrl":null,"url":null,"abstract":"<div><p><span>The energy spectra<span> of Thunderstorm ground enhancement (TGE) electrons and gamma rays are the key evidence for proving the origin of enhanced </span></span>particle fluxes<span> from thunderclouds. Till now, the electron energy spectrum was measured only by the Aragats large scintillation spectrometer ASNT. We changed the electronics board of the SEVAN detector installed at the Umwelt-Forschungs-Station (UFS, Schneefernerhaus, 2650 m asl) to allow these vital measurements near the top of the Zugspitze. The new electronics of the SEVAN detector, supplied with logarithmic ADC, for the energy release measurements up to 50 MeV (the thickness of the spectrometric scintillator is 25 cm). Thus, by measuring energy releases well above 3 MeV, we unambiguously separate Radon progeny gamma radiation from the electrons and gamma-ray relativistic runaway avalanches. Using the different energy release histograms allows for separating charged and neutral particles, enabling the disentangling of electron and gamma-ray energy spectra. On May 23, 2023, the first TGE was registered on Zugspitze by the SEVAN detector. The gamma-ray flux enhancement was 44%, corresponding to the observed count rate peak enhancement of 44σ. The gamma-ray energy spectrum was recovered, maximum energy is 60 MeV. On the same day, a large TGE was observed on Aragats. The TGE maximum flux overpasses the fair-weather flux by 207%, equivalent to a 1-minute peak significance of 400σ. Maximum energy of electrons is 50 MeV, gamma rays – 45 MeV. In this context, we will explore and explain the new capabilities of the SEVAN detector installed on Zugspitze and the rearranged similar detector on Aragats. We also present and compare electron and gamma-ray energy spectra from Aragats TGE and gamma-ray energy spectrum from Zugspitze.</span></p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"156 ","pages":"Article 102924"},"PeriodicalIF":4.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092765052400001X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The energy spectra of Thunderstorm ground enhancement (TGE) electrons and gamma rays are the key evidence for proving the origin of enhanced particle fluxes from thunderclouds. Till now, the electron energy spectrum was measured only by the Aragats large scintillation spectrometer ASNT. We changed the electronics board of the SEVAN detector installed at the Umwelt-Forschungs-Station (UFS, Schneefernerhaus, 2650 m asl) to allow these vital measurements near the top of the Zugspitze. The new electronics of the SEVAN detector, supplied with logarithmic ADC, for the energy release measurements up to 50 MeV (the thickness of the spectrometric scintillator is 25 cm). Thus, by measuring energy releases well above 3 MeV, we unambiguously separate Radon progeny gamma radiation from the electrons and gamma-ray relativistic runaway avalanches. Using the different energy release histograms allows for separating charged and neutral particles, enabling the disentangling of electron and gamma-ray energy spectra. On May 23, 2023, the first TGE was registered on Zugspitze by the SEVAN detector. The gamma-ray flux enhancement was 44%, corresponding to the observed count rate peak enhancement of 44σ. The gamma-ray energy spectrum was recovered, maximum energy is 60 MeV. On the same day, a large TGE was observed on Aragats. The TGE maximum flux overpasses the fair-weather flux by 207%, equivalent to a 1-minute peak significance of 400σ. Maximum energy of electrons is 50 MeV, gamma rays – 45 MeV. In this context, we will explore and explain the new capabilities of the SEVAN detector installed on Zugspitze and the rearranged similar detector on Aragats. We also present and compare electron and gamma-ray energy spectra from Aragats TGE and gamma-ray energy spectrum from Zugspitze.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.