Phase change plasmonic metasurface for dynamic thermal emission modulation

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2024-01-02 DOI:10.1063/5.0165663
Zexiao Wang, Lin Jing, Xiu Liu, Xiao Luo, Hyeong Seok Yun, Zhuo Li, Sheng Shen
{"title":"Phase change plasmonic metasurface for dynamic thermal emission modulation","authors":"Zexiao Wang, Lin Jing, Xiu Liu, Xiao Luo, Hyeong Seok Yun, Zhuo Li, Sheng Shen","doi":"10.1063/5.0165663","DOIUrl":null,"url":null,"abstract":"Plasmonic metasurfaces with adjustable optical responses can be achieved through phase change materials (PCMs) with high optical contrast. However, the on–off behavior of the phase change process results in the binary response of photonic devices, limiting the applications to the two-stage modulation. In this work, we propose a reconfigurable metasurface emitter based on a gold nanorod array on a VO2 thin film for achieving continuously tunable narrowband thermal emission. The electrode line connecting the center of each nanorod not only enables emission excitation electrically but also activates the phase transition of VO2 beneath the array layer due to Joule heating. The change in the dielectric environment due to the VO2 phase transition results in the modulation of emissivity from the plasmonic metasurfaces. The device performances regarding critical geometrical parameters are analyzed based on a fully coupled electro-thermo-optical finite element model. This new metasurface structure extends the binary nature of PCM based modulations to continuous reconfigurability and provides new possibilities toward smart metasurface emitters, reflectors, and other nanophotonic devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"35 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0165663","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic metasurfaces with adjustable optical responses can be achieved through phase change materials (PCMs) with high optical contrast. However, the on–off behavior of the phase change process results in the binary response of photonic devices, limiting the applications to the two-stage modulation. In this work, we propose a reconfigurable metasurface emitter based on a gold nanorod array on a VO2 thin film for achieving continuously tunable narrowband thermal emission. The electrode line connecting the center of each nanorod not only enables emission excitation electrically but also activates the phase transition of VO2 beneath the array layer due to Joule heating. The change in the dielectric environment due to the VO2 phase transition results in the modulation of emissivity from the plasmonic metasurfaces. The device performances regarding critical geometrical parameters are analyzed based on a fully coupled electro-thermo-optical finite element model. This new metasurface structure extends the binary nature of PCM based modulations to continuous reconfigurability and provides new possibilities toward smart metasurface emitters, reflectors, and other nanophotonic devices.
用于动态热发射调制的相变质子元表面
通过具有高光学对比度的相变材料(PCM),可以实现具有可调光学响应的等离子体元表面。然而,相变过程的开关行为会导致光子器件的二进制响应,从而限制了两级调制的应用。在这项工作中,我们提出了一种基于 VO2 薄膜上的金纳米棒阵列的可重构元表面发射器,以实现连续可调的窄带热发射。连接每个纳米棒中心的电极线不仅能实现电发射激发,还能通过焦耳加热激活阵列层下 VO2 的相变。VO2 相变引起的介电环境变化导致了等离子体元表面发射率的调制。根据完全耦合的电-热-光有限元模型,分析了有关关键几何参数的器件性能。这种新型元表面结构将基于 PCM 调制的二进制性质扩展到连续可重构性,为智能元表面发射器、反射器和其他纳米光子器件提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信