{"title":"A Diagonalization-Based Parallel-in-Time Algorithm for Crank-Nicolson’s Discretization of the Viscoelastic Equation","authors":"Fu Li, Yingxiang Xu","doi":"10.4208/eajam.2022-304.070323","DOIUrl":null,"url":null,"abstract":"In this paper, we extend a diagonalization-based parallel-in-time (PinT) algorithm to the viscoelastic equation. The central difference method is used for spatial discretization, while for temporal discretization, we use the Crank-Nicolson scheme. Then an all-at-once system collecting all the solutions at each time level is formed and solved using a fixed point iteration preconditioned by an $α$-circulant matrix in parallel. Via a rigorous analysis, we find that the spectral radius of the iteration matrix is uniformly bounded by $α/(1 − α),$ independent of the model parameters (the damping coefficient $\\varepsilon$ and the wave velocity $\\sqrt{\\gamma}$) and the discretization parameters (the time step $\\tau$ and the spatial mesh size $h$). Unlike the classical wave equation with Dirichlet boundary condition where the upper bound $α/(1 − α)$ is very sharp, we find that the occurrence of the damping term $−\\varepsilon∆y_t,$ as well as the large final time $T,$ leads to even faster convergence of the algorithm, especially when $α$ is not very small. We illustrate our theoretical findings with several numerical examples.","PeriodicalId":48932,"journal":{"name":"East Asian Journal on Applied Mathematics","volume":"215 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"East Asian Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/eajam.2022-304.070323","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we extend a diagonalization-based parallel-in-time (PinT) algorithm to the viscoelastic equation. The central difference method is used for spatial discretization, while for temporal discretization, we use the Crank-Nicolson scheme. Then an all-at-once system collecting all the solutions at each time level is formed and solved using a fixed point iteration preconditioned by an $α$-circulant matrix in parallel. Via a rigorous analysis, we find that the spectral radius of the iteration matrix is uniformly bounded by $α/(1 − α),$ independent of the model parameters (the damping coefficient $\varepsilon$ and the wave velocity $\sqrt{\gamma}$) and the discretization parameters (the time step $\tau$ and the spatial mesh size $h$). Unlike the classical wave equation with Dirichlet boundary condition where the upper bound $α/(1 − α)$ is very sharp, we find that the occurrence of the damping term $−\varepsilon∆y_t,$ as well as the large final time $T,$ leads to even faster convergence of the algorithm, especially when $α$ is not very small. We illustrate our theoretical findings with several numerical examples.
期刊介绍:
The East Asian Journal on Applied Mathematics (EAJAM) aims at promoting study and research in Applied Mathematics in East Asia. It is the editorial policy of EAJAM to accept refereed papers in all active areas of Applied Mathematics and related Mathematical Sciences. Novel applications of Mathematics in real situations are especially welcome. Substantial survey papers on topics of exceptional interest will also be published occasionally.